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Abstract

In reversal learning tasks, the behavior of humans and animals is often assumed to be uni-

form within single experimental sessions to facilitate data analysis and model fitting. How-

ever, behavior of agents can display substantial variability in single experimental sessions,

as they execute different blocks of trials with different transition dynamics. Here, we

observed that in a deterministic reversal learning task, mice display noisy and sub-optimal

choice transitions even at the expert stages of learning. We investigated two sources of the

sub-optimality in the behavior. First, we found that mice exhibit a high lapse rate during task

execution, as they reverted to unrewarded directions after choice transitions. Second, we

unexpectedly found that a majority of mice did not execute a uniform strategy, but rather

mixed between several behavioral modes with different transition dynamics. We quantified

the use of such mixtures with a state-space model, block Hidden Markov Model (block

HMM), to dissociate the mixtures of dynamic choice transitions in individual blocks of trials.

Additionally, we found that blockHMM transition modes in rodent behavior can be accounted

for by two different types of behavioral algorithms, model-free or inference-based learning,

that might be used to solve the task. Combining these approaches, we found that mice used

a mixture of both exploratory, model-free strategies and deterministic, inference-based

behavior in the task, explaining their overall noisy choice sequences. Together, our com-

bined computational approach highlights intrinsic sources of noise in rodent reversal learn-

ing behavior and provides a richer description of behavior than conventional techniques,

while uncovering the hidden states that underlie the block-by-block transitions.

Author summary

Humans and animals can use diverse decision-making strategies to maximize rewards in

uncertain environments, but previous studies have not investigated the use of multiple

strategies that involve distinct latent switching dynamics in reward-guided behavior.
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Here, using a reversal learning task, we showed that mice displayed a much more variable

behavior than would be expected from a uniform strategy, suggesting that they mix

between multiple behavioral modes in the task. We develop a computational method to

dissociate these learning modes from behavioral data, addressing the challenges faced by

current analytical methods when agents mix between different strategies. We found that

the use of multiple strategies is a key feature of rodent behavior even in the expert stages

of learning, and applied our tools to quantify the highly diverse strategies used by individ-

ual mice in the task. We further mapped these behavioral modes to two types of underly-

ing algorithms, model-free Q-learning and inference-based behavior. These rich

descriptions of underlying latent states form the basis of detecting abnormal patterns of

behavior in reward-guided decision-making.

Introduction

Reversal learning is a behavior paradigm that is often used to study the cognitive processes

underlying reward-guided action selection and evaluation of actions based on external feed-

back [1,2]. Experiments using this task in humans and diverse animal models have contributed

to our understanding of the cortical and subcortical circuits that are involved in components

of value-guided decision-making such as the evaluation of reward-prediction errors and value

[2–6], assessment of uncertainty [7,8], and model-based action selection [9–11]. Detection of

aberrant behavioral patterns in reversal learning is critical in clinical diagnostics, as these dis-

ruptions are often involved in neuropsychiatric disorders such as obsessive-compulsive disor-

der, schizophrenia, Parkinson’s disease [12–14], as well as neurodevelopmental disorders

[15,16].

In uncertain environments, simple models with relatively few parameters can be fitted to

predict the behavior of reinforcement learning agents. For example, an often-used approach is

to fit the behavior to a reinforcement learning agent with a learning rate parameter, together

with an inverse temperature or exploration parameter [4,17–19]. However, recent studies into

rodent behavior in reversal learning have revealed more complex behavior in this task, sug-

gesting that simple models might not be sufficient to capture natural behavior. For example,

when the level of uncertainty in the environment changes over the course of the experiments,

mice can adapt their learning rates according to the statistics of the environment [20,21], sug-

gesting that the learning rate is not fixed across the trial but varies depending on their internal

estimates of the environment uncertainty. Furthermore, rodent behavior comprises two con-

current cognitive processes, one reward-seeking component and one perseverative compo-

nent, which operate on different time scales during the training session [22]. These previous

modeling approaches suggest a rich diversity in rodent behavior in the task and the need for

sophisticated computational techniques to model the behavior.

A source of behavioral variability that has not been well studied in previous studies is the

use of mixed strategies in reversal learning. In other behavioral tasks, state-space modeling has

revealed the existence of multiple behavioral states that interchange during sensory discrimi-

nation [23,24]. It is unclear whether the use of multiple strategies also exists in rodents’ reversal

learning behavior, and if so, what components exist in the rodents’ behavioral repertoire. It is

also unknown from previous studies whether mice use these complex strategies only in diffi-

cult reversal learning tasks, or whether complex strategies are also commonly used even in rel-

atively simple, deterministic reversal learning environments.
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Here, we investigated these questions using a combination of behavioral experiments and

new computational methods to analyze the mixture of strategies in rodent reward-guided

behavior. We studied the behavior of mice in a deterministic reversal learning task involving

two alternative choices, a simple task that can optimally be solved by a “win-stay, lose-shift”

strategy. Despite this simplicity, we found that mice exhibit sub-optimal behavior in the task

and deviated significantly from a uniform strategy. To dissociate the components of these

mixed strategies, we have built on a previous state-space approach [24] to build a blockwise

hidden Markov model (blockHMM) which allows inferring the latent states that govern rodent

behavior within single sessions. Using this tool, we classified and characterized different

modes of behavior and found that they can be grouped into four main classes: a “low-perfor-

mance” class, two “intermediate-performance” classes, and a “high-performance” class.

Finally, we showed that these diverse modes of behavior can be accounted for by two different

models, model-free behavior involving trial-by-trial value adjustments, and inference-based

behavior involving Bayesian inference of the underlying hidden world state. These new results

and methods highlight the use of mixtures of strategies as a significant source of variability in

rodent behavior during reversal learning, even in a deterministic setting with little uncertainty.

Results

Mice display sub-optimal behavior in a 100–0 reversal learning task

We trained head-fixed mice on a reversal-learning task involving two alternate actions (Fig

1A). Mice were placed on a vertical rotating wheel [25], and on each trial, they were trained to

perform one of two actions, left or right wheel turns. On each trial, one movement was

rewarded with probability of 100% and the other with the complementary probability of 0 (Fig

1B). The environments were volatile such that the high- and low-value sides switched after a

random number of trials sampled between 15–25 without any external cues, requiring animals

to recognize block transitions using only the reward feedback. To ensure stable behavioral per-

formance, we required the average performance of the last 15 trials in each block to be at least

75% before a state transition occurred. We collected behavioral data from n = 21 mice that

were trained in the task for up to 30 sessions per animal (typical animal behavior shown in

Fig 1C).

In the 100–0 environment, the optimal strategy that yields maximum rewards is “win-stay-

lose-shift”, repeating rewarded actions and switching actions after receiving an error which

signals the beginning of the next block. Following this strategy, the accuracy in each block

would be 93–96% per block (14/15 to 24/25 depending on the block length). Expert rodent

behavior falls below this optimal level (Fig 1D) as their performance asymptotes to only 62%

(expert performance range on day 30 across all animals was 30%– 76%), suggesting a source of

sub-optimal reversal strategy that fundamentally underlies their behavioral patterns in the

task.

Deviations from a perfect win-stay lose-shift strategy could occur due to two reasons: ani-

mals might make more errors at the beginning of the block (early, persistent errors), or they

might have a sustained error rate even after switching sides (late, regressive errors) [26,27]. To

determine the source of the sub-optimality, we examined the number of “initial errors”, the

average number of trials it took for animals to switch directions per block, and the “late perfor-

mance”, which is their average performance on the last 10 trials of a block. A win-stay lose-

shift agent would have 1 initial error and 100% late performance (dashed lines, S1A and S1B

Fig). Experimental animals showed both a higher number of initial errors (1.9 ± 0.2 initial

errors) and lower late performance (79 ± 4% performance; mean ± standard error for n = 21

animals) compared to the ideal win-stay lose-shift agents (S1A and S1B Fig). Overall
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performance was not correlated with side bias (difference in performance between left and

right blocks; R = –0.3, p = 0.2, S1C Fig). Across all mice, there was no significant difference in

block performances on left versus right blocks (S1D Fig; p> 0.05 for 29/30 sessions, Wilcoxon

signed rank test).

To characterize their switching dynamics more precisely, we fitted a logistic regression

model with three parameters to observed choices (Fig 1E). These three parameters represent

the latent transition between actions: the switch offset s, slope α, and lapse ε. The switch offset

measures the latency of the switch, the slope measures the sharpness of the transition, while

the lapse rate signifies the behavioral performance after the transition. A win-stay lose-shift

agent would have offset close to 1, very high slope and zero lapse (“WSLS” dashed lines, Fig

1F-H). Expert mice on day 30 instead showed significantly longer switch offset, gentler slope

and higher lapse rates (p< 0.01, p< 0.001, p< 0.001 respectively, Wilcoxon signed rank test;

Fig 1F–1H). Thus, sub-optimal reversal learning behavior in rodent behavior was due to a

combination of both slow switching and high lapse rates.

Fig 1. Mice display noisy behavior in a deterministic reversal learning task. (a) (Top) Behavioral task setup for

head–fixed mice with freely–rotating wheel. Schematic created with biorender.com. (Bottom) Timing structure for

each trial, demarcating the cue, movement and outcome epochs. (b) Structure of deterministic reversal learning task in

a ‘100–0’ environment. Hidden states alternated between right–states, with high reward probability for right actions,

and left–states, with high reward probability for left actions. The block lengths were randomly sampled from a uniform

distribution between 15–25 trials. (c) Example behavioral performance of an animal in the reversal learning task, block

transitions are demarcated by vertical dashed lines. Dots and crosses represent individual trials (correct or incorrect).

Black trace indicates the rolling performance of 15 trials. (d) Session–averaged performance of all mice (n = 21) during

training of 30 sessions. Dashed line indicates the ideal win–stay–lose–shift (WSLS) strategy. (e) Illustration of the

sigmoidal transition function with three parameters: switch offset s, switch slope α, and lapse ε. Session–averaged

switch offset (f), slope (g), and lapse (h) of all mice (n = 21) during training of 30 sessions. Dashed line indicates the

ideal win–stay–lose–shift (WSLS) strategy.

https://doi.org/10.1371/journal.pcbi.1011430.g001
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Mice display diverse and non-uniform switching dynamics in single

sessions

Our logistic regression model assumes rodent behavior is uniform in each session, but it is not

clear if this assumption is valid. For instance, if mice use different transition modes within sin-

gle sessions, the previous analysis would be insufficient to describe the switching dynamics.

Supporting the possibility of multiple strategies during the session, we observed highly variable

block-by-block performance and lapse rates within behavioral sessions. For example, the

block-by-block performance and lapse rates of an animal, E54, were highly variable even at the

expert stage (days 26–30 of training; Fig 2A). This variability is much higher than would be

expected by a uniform strategy (red error bars; Fig 2A). There was also no apparent of change

of strategies between the first and last blocks of the session, suggesting that these sources of

randomness occur sporadically during the session and not due to a change in motivation of

the animal with satiety states.

This unexpected increase in behavioral variability was consistently observed in our cohort

of animals (Fig 2B). For each animal, we computed the “observed” variability in performance,

which is standard deviation of performance across all blocks in the final 5 training sessions of

the animals (black bars, Fig 2B). We then computed the degree of variability that would be

expected from a uniform strategy. To measure this expected variability, we fit a single sigmoi-

dal transition curve to the behavior in these last 5 sessions and generated the behavior of an

agent that always executes this transition dynamics in all blocks in these sessions. We again

computed the standard deviation in performance of this simulated behavior, and repeating

this procedure for N = 100 runs yields a distribution of this variability measure of the uniform

agent. In 20/21 animals, the observed variability of performance was significantly higher than

expected (p< 0.01 across bootstrapped distribution), suggesting that rodent behavior is highly

non-uniform and that they could be using multiple transition strategies in their behavioral

sessions.

A state-space model to disentangle mixture of transition dynamics in

reversal learning

The previous analysis suggests that mice might perform mixtures of transition modes

within single training sessions, raising the need to develop more sophisticated analytical

techniques to disentangle these behavioral mixtures from behavioral data. We formalized

the new analytical framework with a mixture model where individual animals might vacil-

late between different strategies, switching their choices immediately in some blocks, transi-

tioning more slowly in others, and selecting choices at random toward the end of the

session as they became satiated (red, green, and blue shades in Fig 3A, respectively, for a

simulated agent). In our framework, each of these strategies might be governed by a sepa-

rate choice transition function with varying offsets, slopes and lapse rates (sigmoidal curves

in Fig 3B). We took advantage of recent developments of state space models that were used

to infer discrete latent states from sequences of discrete or continuous variables [24,28,29].

In particular, adapting the previously developed Generalized Linear Model–Hidden Mar-

kov Model (GLM-HMM) framework [24] to the reversal learning setting, we assumed that

each hidden state determines the parameters of a single sigmoidal transition function (offset

s, slope α and lapse ��), which in turn determines the joint log likelihood of all the choices

within each block. We named the approach “block Hidden Markov model (blockHMM)” to

indicate the use of hidden states which dictate the evolution of choices throughout the block

duration (Fig 3A).
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More concretely, we assumed that the choice sequences in each block k is governed by an

underlying sigmoidal transition function σk(t), where t = 0, 1, 2, . . . are the trial numbers

within the block (Fig 3A). These transition functions can be parameterized by the switch delay

sk, slope αk and lapse rate ��k (Eq M.2 and Fig 3B). The discrete latent states zi’s evolve from one

block to the next with a Markovian property specified by the transition matrix P(zi+1|zi)
(denoted by arrows in Fig 3A and 3B). The transition function determines the likelihood of all

trials within each block (Eq M.3 and Fig 3B). Finally, to fit the model, we used the EM algo-

rithm to maximize the log-likelihood over all observed choices, which is the sum of the log-

likelihoods of individual trials (Eq M.4 and Fig 3B).

Fig 2. Non–uniform performance of mice in reversal learning. (a) Example performance of a mouse (E54) in

relation to its lapse rate in the last 5 days of training (days 26–30). Individual dots show the combinations of

performance and lapse rates in single blocks. Lighter blue dots represent early blocks in the session while dark blue

dots are late blocks. Red error bars represent the expected mean and standard deviation in performance and lapse rate

assuming the mouse uses a single strategy. (b) Comparison of the observed standard deviation of block performances

in the final five training sessions (black vertical lines) with the expected standard deviation in performance for an agent

that uses a uniform strategy (box plots, n = 100 bootstrap runs). Each row represents one of 21 experimental mice (ID

of animals shown on the y–axis). The average performance of each animal on the last 5 days of training, E, is shown on

the right.

https://doi.org/10.1371/journal.pcbi.1011430.g002
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Fig 3. Block Hidden Markov Model. a) Behavior of an example agent generated by a Hidden Markov process with

K = 3 components. Colored circles represent the underlying hidden states, zi, which evolve according to a Markov

chain. Each state (shown by blue, red and green shade) follows a different set of underlying switching dynamics. Blue

dots represent correct choices, red crosses represent incorrect choices. (Inset) Average transition function across all

blocks of the session (black) together with the fitted sigmoidal curve (blue). b) (Top) Transition functions

corresponding to each of the three hidden states, zi = 1, 2, 3. Each sigmoidal curve can be parameterized by three

features, the slope αi, offset si, and lapse εi. Arrows represent transition probabilities between the states. (Bottom) Eqs

of the blockHMM generative model. Each hidden state governs the choice sequence in each block according to the

sigmoidal transitions (Eqs 1 and 2). The log–likelihood of the observed choices in the block is the sum of the log–

likelihoods of individual trials (Eq 3). c) (Top) Example behavior in 1000 blocks of trials generated by the same

blockHMM mixture shown in panels a and b. Each column represents one block, with trials 1 to 30 of each block

running from top to bottom. Red represents incorrect choices and blue represents correct choices. (Middle) True

states that underlie the behavior shown in the top panel. (Bottom) Inferred latent states by the blockHMM fitting

procedure. d) (Left) Convergence of the log–likelihood during model fitting in panel c to the true log–likelihood of the

data (dashed line). (Right) Dependence of cross–validated log–likelihood on the number of components, K. e) True

and inferred transition matrices for the behavior shown in panel c. f) Grouping of blocks of trials according to the

inferred state after the model fitting with K = 3 HMM components. (Top) Raw behavioral performance grouped by the

identity of the inferred latent state. (Bottom) Average transition function and fitted sigmoidal curve for all blocks that

share the same inferred state. g) Comparison of true and inferred parameters for the three components of the behavior

shown in panel c.

https://doi.org/10.1371/journal.pcbi.1011430.g003
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Our synthetic agent (Fig 3A) was simulated according to a blockHMM process with K = 3

hidden states. State z = 1 (blue) corresponded to a random mode of behavior with a flat transi-

tion function, z = 2 (red) corresponded to a sigmoidal curve with a fast offset, and z = 3

(green) involved a sharp but delayed switching of actions. We generated the behavior of this

agent over 1000 blocks (Fig 3C), and fitted the blockHMM model to the observed choice

sequences of the agent. The log-likelihood of the fit converged to the true log likelihood value

(Fig 3D, left). To determine the best number of latent states for the model, we trained the

model on 80% of the blocks and evaluated the log-likelihood on the remaining 20% of the

blocks. Inspecting the normalized cross-validated log-likelihood, we found that the optimal

number of clusters was K = 3, agreeing with the ground-truth value (Fig 3D, right). At the end

of the fitting procedure, blockHMM recovered the correct transition matrix (Fig 3E), as well as

the parameters of the transition function in each mode (Fig 3F–3G). Importantly, the inferred

latent states closely matched the true states that underlie the behavior (Fig 3C, bottom panels).

Components of mixtures of strategies of expert mice

We applied the algorithm to analyze the behavior of expert mice (n = 21) in the task. The

model was fitted to individual animal behavior and maximum cross-validated log-likelihood

was used to determine the number of components, K, that maximized this metric (S2A Fig).

The number of behavioral modes ranged from 2 to 6 in our experimental cohort, and did not

differ significantly between males and females (S2B Fig). Transition matrices for individual

mice are shown in S3 Fig.

The shapes of the blockHMM transition curves in experimental animals were highly diverse

and showed various types of transition dynamics (Fig 4A). Some modes had slow slopes, others

had fast switching, and others had high lapse rates. The distribution of mode performance was

multi-modal and could be clustered into three groups (Fig 4B), with low performance (below

65%), intermediate performance (65–84%) and high performance (above 84%). These perfor-

mance levels correspond to three distinct regimes of behavior with different transition dynam-

ics (Fig 4C and 4D). “Low performance” modes are random behavior with flat transition

curves with high switch offsets or high lapse rates indicating random behavior with no switch-

ing (blue; Fig 4C). “Intermediate performance” modes can be further broken down to two sub-

groups: one with high switch offset (magenta; Fig 4C) and the other with high lapse rate

(yellow; Fig 4C). “High performance” modes have both low offsets and low lapse rates (green;

Fig 4C). We verified that each animal executes a mixture of behavior from multiple regimes

instead of behavior in a single domain (Fig 4E). Indeed, 17/21 mice (81.0%) used a combina-

tion of low, medium and high-performance behavioral modes. The remaining 4/21 mice

(19.0%) used low and high-performing behavioral modes with no intermediate modes. This

shows that rodents tend to mix between diverse types of strategies during reversal learning.

There was no apparent difference in composition of strategies between males and females

(S2C Fig). Similarly, no significant sex differences were found in the overall performance in

the task (S1E and S1F Fig, p = 0.97 for sessions 1–10, p = 0.7 for sessions 11–20, p = 0.2 for ses-

sions 21–30, Mann-Whitney U-test).

The diversity of transition modes is accounted for by the spectrum of

model-free and inference-based strategies

Our analytical approach decomposes rodent behavior in the reversal learning task into a num-

ber of switching modes, each characterized by a respective transition curve. Some of these

transition modes have very fast offsets and close to zero lapse rates, resembling the behavior of

a win-stay lose-shift agent. However, other modes were sub-optimal and cannot be explained
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by such a strategy. What types of underlying algorithm might give rise to these modes? We will

show next that the diversity in transition modes can be sufficiently accounted for by the space

of Q-learning and inference-based behavior, two types of algorithms that are frequently dis-

cussed in the literature of reversal learning.

Fig 4. Component mixtures of expert mice. (a) blockHMM transition curves of six representative mice (E46, E53,

E56, F02, FH02, FH03). The number of behavioral modes ranged from two to six in all our experimental mice. In each

row, transition curves are sorted in increasing order of performance. (b) Distribution of block performances across

behavioral modes. Behavioral modes were divided into three groups based on this distribution: low performance

(<65%), intermediate (65–84%), and high (>84%). (c) Distribution of two transition parameters, offset and lapse of

the low–performance, medium–performance and high–performance groups. The low performance regime (blue) had

a high offset and lapse rate. The intermediate performance regime consists of two sub–groups: one group (yellow) had

a high lapse rate but a low offset, and the other (pink) had a high offset but a low lapse rate. The high–performance

regime (green) had a low lapse rate as well as an offset. (d) Block transition dynamics of the four behavioral regimes

identified in c. (e) Types of behavioral modes found in the behavior of each experimental mouse (n = 21). All animals

performed a mix of behavioral modes ranging from low to high performance.

https://doi.org/10.1371/journal.pcbi.1011430.g004
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More concretely, the spectrum of transition functions might be accounted for by the vari-

ability between two classes of agents, Q-learning and inference-based agents. Q-learning is a

model-free learning strategy that performs iterative value updates based on external feedback

from the environment (Fig 5A, top). In the reversal learning task, the agents maintain two val-

ues for left and right actions, qL and qR. The value of the chosen action on each trial is updated

according to

qi  qi þ gðr � qiÞ ð1Þ

where r is the trial outcome (0 for errors or 1 for rewards), and γ is the learning rate parameter.

We additionally assumed that the agent adopts an ε-greedy policy, choosing the higher-valued

action with probability 1 - ε, and choosing actions at random (with probability 50%) on a

small fraction ε of trials.

In contrast, “inference-based” agents select actions by inferring the world’s hidden state,

i.e., which side is more rewarding, on each trial (Fig 5A, bottom). The internal model of these

agents consists of two hidden states, L and R, that determine whether the “left” or “right”

action is associated with higher reward probability. The transitions of these hidden states are

approximated by a Markov process with probability Pswitch of switching states and 1−Pswitch for

remaining in the same state on each trial. Given this model and observed outcomes on each

trial, the ideal observer can perform Bayesian updates to keep track of the posterior distribu-

tion of the two states (see update equations in Methods). The agent then uses the posterior

over the world states to select the action that maximizes the expected reward on that trial.

To understand the correspondence between the type of algorithm (Q-learning or infer-

ence-based) and the shape of the transition function, we will break down our analysis into two

steps. We first built a forward model by performing a simulation of behavior that is exhibited

by Q-learning and inference-based agents with different model parameters. This analysis char-

acterizes and quantifies the features of the transition dynamics shown by each agent. Then, we

evaluated whether it is possible to infer the underlying strategy based on the observed transi-

tion function using a decoding approach.

Forward simulations

For forward simulations, the behavior of model-free agents was simulated for a range of

parameters where 0.01� γ� 1.4, and 0.01� ��� 0.5, and inference-based agents were simu-

lated for a parameter range 0.01� Pswitch� 0.45 and 0.55� Prew� 0.99 (example simulations

shown in Fig 5B). As expected from the roles of the parameters from previous literature, transi-

tion curves reflect the variations of these parameters along principled axes. For instance, for

model-free agents, increasing γ leads to faster switch offsets (S4A–S4C Fig), while varying ��

predominantly affects the lapse rates of the sigmoidal transitions (S4B and S4D Fig). Infer-

ence-based agents are clearly distinguished from model-free behavior by their small lapse rates

(S5 Fig). Their behavior varies along an axis that corresponds to the volatility of the environ-

ment. As Pswitch and Prew increase, the internal model assumed by the agents become increas-

ingly volatile. This makes agents more sensitive to errors and hence resulting in faster switch

offsets (S5B Fig). Despite these variations in the latency of the switch, the lapse rates of infer-

ence-based agents generally remain close to zero.

Backward inference

Although there is a wide variation in the features of the transition curves that are exhibited by

the various agents, the four types of transition modes that we previously observed in rodent

behavior can be seen in particular regimes of either Q-learning or inference-based behavior.
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Fig 5. Mapping transition dynamics to underlying behavioral strategies. (a) Implementation of Q–learning (top) and inference–based algorithms (bottom)

for simulating choice sequences of artificial agents. (b) Example behavior of simulated Q–learning (top) and inference–based agents (bottom). Each dot or

cross represents the outcome of a single trial. In the Q–learning plot, black and blue traces represent the values of each of the two actions. In the inference–

based plot, black trace represents the posterior probability of the right state P (st = R j c1, r1,. . ., ct–1, rt–1). (c) We performed a computational simulation of an

ensemble of Q–learning and inference–based agents taken from grids that spanned the Q–learning parameter space (top), or the inference–based parameter

space (bottom). Based on the results of the simulations, the spaces were clustered into six groups (represented by different colors), that showed qualitatively

different behavior. (d) Transition functions grouped according to the behavioral regime Q1–4, IB5–6. Black lines represent single agents and red trace

represents the mean across all the transition functions in each group. (e) Behavioral regime composition of each of the six algorithmic domains (Q1–4, IB5–6).

(f) Cross–validated confusion matrix showing the classification performance of a k–nearest neighbor (kNN) classifier trained to predict the class identity (Q1–

4, IB5–6) based on the observed transition curve. Diagonal entries show the accuracy for each respective class.

https://doi.org/10.1371/journal.pcbi.1011430.g005
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(1) “Low-performance”, random behavior is seen in the model-free agents with low learning

rate. (2) “Intermediate-performance” behavior with high offset is seen in model-free agents

with low learning rate and low exploration rate. It is also seen in inference-based agents in the

stable regime. (3) “Intermediate-performance” behavior with high lapse is seen in model-free

agents with high exploration rates and high learning rates. (4) “High-performance” behavior is

seen in the inference-based agents in the volatile regime.

We aim to establish a more precise mapping between the algorithmic spaces (Q-learning

and inference-based) and transition dynamics exhibited by the agents. To simplify this map-

ping, we clustered the sigmoidal transition features of all simulated inference-based and Q-

learning agents into groups that display similar transitions. Each agent’s transition curve was

reduced to four features–the fitted switch offset, slope, lapse, and overall performance which

were used to perform an unsupervised clustering into six groups (S6 Fig). These groups clus-

tered together in the parameter spaces (Fig 5C). The transition curves of these six classes

resembled the types of transitions that were observed in rodents’ HMM modes (Fig 5D).

Matching these groups to the corresponding regime on the parameter spaces, we found that

“low-performance” behavior was seen primarily in the Q1 regime (Fig 5E) which had the low-

est learning rate γ. “Intermediate-performance”, high offset was seen in the Q2 regime which

had intermediate learning rate but low exploration ε. “Intermediate-performance” with high

lapse was seen in regime Q3, with the same learning rate as Q2 but higher exploration. It is

also seen in regime Q4, the class which contains various agents with very high learning rate (γ
> 1). “High-performance” behavior was seen in the inference-based agents (IB5-6). The

regime IB5 also contains a small number of agents with intermediate-performance and high

offset.

To validate the utility of these classes, we trained a k-nearest neighbor (kNN) classifier to

predict the class identity (Q1-4 or IB5-6) of synthetic agents given the observed transition

curve. We found that the classifier performed with a high accuracy of 88% on a held-out test

set (Fig 5F), compared to a chance performance of 17%. Altogether, these results establish a

consistent and reliable mapping from the underlying strategies in the model-free or inference-

based parameter spaces, to the observed transition functions that can account for the diversity

of rodent behavior during reversal learning.

Changes in the composition of strategies during task learning

We next investigated changes in the composition of strategies during the learning of the task.

Behavioral modes of animals were first re-classified into the six behavioral strategies, Q1-4,

IB5-6 (Fig 6A and 6B). Animals typically used a combination of Q-learning and inference-

based modes throughout their training sessions. However, there was some variability in the

types of strategies used by different animals. A small subset of animals, such as f16 (Fig 6C),

consistently employ model-free strategies during execution of the task. Other animals, such as

f11 (Fig 6D) started with a model-free strategy but transitioned to inference-based modes with

learning. Remarkably, even in the expert stage (day 30 of training), the animal never operated

fully in the inference-based regime but continues to execute a mixture of strategies. This was a

common feature of many animals that managed to reach the inference-based stage (such as

animal e46, e54, e56, f01, f11, f12, fh02, fh03, Fig 6A. The compositions of blockHMM decoded

strategies of individual animals are shown in S7 Fig, together with the individual session

performances).

This shift from model-free to inference-based behavior was seen in the average mixture

composition of the animals (Fig 6E). On average, animals started training with a significant

fraction of the Q1 mode and smaller fraction of Q4 (56% in Q1 and 24% in Q4, averaged across
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days 1–5). Over the course of training, the mixture of behavioral strategies slowly shifted from

Q1 to Q4, such that around day 15, there is a higher fraction of Q4 than Q1 mode (39% in Q4

compared to 35% in Q1, averaged across days 16–20). This shift reflects an average increase in

learning rate in the Q-learning regime. At the same time, the fraction of inference-based

modes, IB5 and IB6, was low at the beginning (3% in IB5 and 6% in IB6 averaged across days

1–5), but continuously increased as animals gained experience with the task. At the expert

stage, there was an increase in fraction of blocks in the inference-based mode (7% in IB5 and

15% in IB6 on day 30), but the mixture of strategies still remained with Q1 and Q4 being the

primary Q-learning modes of the animals. These patterns of strategy mixture were consistent

Fig 6. Mice use combination of model–free and inference–based strategies in reversal learning. (a) Composition of blockHMM mixtures for individual

animals. Each row represents one mouse with ID shown on the left. The color of each square represents the decoded behavioral regime of each HMM mode

(Q1–4, IB5–6). The number of blocks for each animal, K, was selected by cross–validation and are sorted here in descending order. (b) Transition function of

HMM modes for all animals, grouped according to the decoded behavioral regime. (c, d) Distribution of HMM modes for two example animals, f16, and f11,

which displayed vastly different behavioral strategies with learning. The average performances of the two animals on the last 5 days of training, E, are shown. (e)

Average frequency of HMM modes for n = 21 experimental animals (mean ± standard error) showing the average evolution of behavioral mixtures over the

course of training.

https://doi.org/10.1371/journal.pcbi.1011430.g006
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between male and female mice, with no statistically significant difference in composition

between sexes (S8 Fig; p> 0.05 for all modes and session groups, Mann-Whitney U-test).

Overall, these ubiquitous use of mixtures of strategies, which were distinctive both in naïve

and expert animals, further underscore the importance of our approach to dissociate and char-

acterize the features that constitute individual modes of behavior.

Identification of early switches in blockHMM modes

Thus far, our analysis has assumed that animals execute transitions once the block reversals

have happened, with the switch offset s constrained to be positive. By relaxing this assumption,

we investigated whether mice can anticipate upcoming block switches after prolonged task

exposure, consistent with previous findings [8,30]. In each block, we included three additional

trials prior to the block transitions, and repeated the blockHMM fitting procedure. The distri-

bution of the fitted parameters of the modes was similar to the original results (S9A–S9C Fig;

compared to Fig 4B–4D). Notably, a subset of high-performing modes had offset s< 0, sug-

gesting behavioral transitions prior to the actual block reversal (S9B Fig). These “high-perfor-

mance, early” switches (s< 0) displayed distinct transition dynamics compared to the “high-

performance, regular” switching modes (s� 0; S9C, bottom panel). Together, these early

switch modes comprise a low but constant proportion of all blocks in the animals’ switching

behavior (S9D Fig).

Discussion

Using a simple version of the reversal learning task which alternates between 0% and 100%

reward probabilities, we demonstrated several sources of non-ideal behavior in mice in this

task. Rodent behavior deviates from the performance of a win-stay lose-shift agent in several

ways. The average transition of mice was both slower at the beginning of the block (higher per-

severative errors), and their error rates remained high even after switching (higher regressive

errors). This behavior was better than a random strategy, but worse than an optimized agent,

consistent with recent results [20,22]. The non-zero regressive errors in the deterministic envi-

ronment of our task shows that mouse behavior is more exploratory than would be expected

for a matching behavior [31–33].

Another source of unexpected behavior in mice was the use of multiple strategies. We

showed evidence that this was a ubiquitous feature of mouse behavior, as 20/21 of our animals

showed much higher variability in performance than would be expected by a uniform strategy.

Previous studies have investigated the use of different learning rates [20], or different compo-

nents (reward-seeking and perseverative) [22] of behavior in rodents in the context of reward-

guided behavior. Our finding that non-uniformity of behavior is seen even in the context of

the 100–0 reversal learning task suggests the widespread use of multiple strategies, even in sim-

ple tasks and in deterministic environments. Thus, mixed strategies can be seen in simple

behavior that need not involve drastic changes in the statistics of the environment [24].

Through the modeling of different modes of behavior that constitute these mixtures of

strategies, we introduce a more general framework than previous studies to disentangle the

components of these mixtures. In addition to allowing the learning rates to vary between

blocks, we also considered variations in the lapse rates of the transition, an important parame-

ter in rodent behavior [34–38]. We developed a novel state-space model, blockHMM, to seg-

ment of behavior during the session into blocks of trials that are governed by different

underlying states. Our model builds on recent modeling approaches which are used to infer

discrete latent states that underlie neural dynamics [28], natural behavior [29], and behavior in

decision-making tasks [24,39].

PLOS COMPUTATIONAL BIOLOGY Mixture of learning strategies in reversal learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011430 September 14, 2023 14 / 28

https://doi.org/10.1371/journal.pcbi.1011430


Applied to rodent behavior, blockHMM reveals diverse type of dynamics exhibited by

rodents in the different transition modes. We found four distinct types of transitions in the

rodent behavior repertoires: a “high performance” mode with fast switching and low lapse

rate, similar to win-stay lose-shift behavior, a “low performance” mode where performance

within the block was close to random, and two “intermediate-performance” modes, one with

high offset and the other with high lapse rates. Rather than being dominated by any single

type, typical mouse behavior involves a combination of these different behavioral modes (Fig

4B–4D). Thus, blockHMM reveals a dynamic composition of rodent strategies and provides

descriptive measurements of each transition mode being used. By considering the possibility

of negative offsets (s< 0), we uncovered a subset of modes where switches occur before the

actual block reversal. These modes could arise as mice anticipated upcoming switches [30,40],

or due to exploration of the unrewarded actions, a common feature of mouse behavior [34,41].

BlockHMM provides an important tool to identify these blocks for the investigation of neural

mechanisms of early switching.

The diverse transition modes were then matched to the behavior of two types of algorithms,

Q-learning and inference-based behavior, two models that are frequently used for analysis of

choice sequences in reversal learning tasks. Q-learning is a type of reinforcement learning

model that has been often used for probing representation of action values in numerous brain

regions [4,20,31,42–46], while inference-based behavior has been investigated in studies of

internal models in the brain during tasks involving hidden states [8,47]. The transition behav-

ior of simulated Q-learning and inference-based agents indeed resembled the four types of

behavior that mice exhibit in their transition modes. Using computational simulations, we

showed that Q-learning and inference-based behavior can be grouped into six regimes, Q1-4

for Q-learning and IB5-6 for inference-based. This classification helps establish a mapping

between behavioral algorithm and observed transition mode: low-performance modes primar-

ily correspond to Q1, intermediate-performance, high offset corresponds to Q2, intermediate-

performance, high lapse corresponds to Q3 and Q4, while high-performance mode corre-

sponds to the inference-based regimes (IB5-6) (Fig 5E). As a transitional regime from Q-learn-

ing to inference-based learning, Q4 consists of both intermediate- and high-performance

modes. Decoding performance onto these four regimes were high (87% compared to a chance

performance of 17%; Fig 5F), highlighting the robustness of this classification scheme.

Consistent with previous findings, rodent behavior shifted from model-free learning modes

to inference-based behavior with training [7,10,48] (Fig 6E). However, a notable additional

finding from our study is that although the frequency of inference-based modes did increase,

inference-based behavior never became dominant even at the expert stage of training. Instead,

both model-free and inference-based modes continued to co-exist at this stage. This suggests

that mixing between model-free and inference-based behavior could be a key feature of rodent

behavior that is preserved despite familiarity with the task. This mixture of strategy was seen

for both male and female mice, with comparable number of modes and composition between

the two sexes (S2B, S2C and S8 Figs). Although differences in these metrics were not statisti-

cally significant, blockHMM provides a rich set of descriptive parameters characterizing the

transition dynamics and state transition probabilities that can be a powerful tool for future

studies which aim to understand sex differences in behavioral strategies in reversal learning

[49–52].

An interesting question this raises is why this use of mixtures of strategies might be adaptive

for rodents in their natural environments. One hypothesis is that animals might fail to sustain

the memory of action values or internal models of the environment structure over time

[18,53]. For instance, the memory of the unchosen action values, or of the internal model

parameters (Pswitch and Preward) might degrade over time. This requires exploratory modes of
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behavior (Q-learning) to maintain and reconstruct these values. Another hypothesis is that

mice continuously revert back to model-free behavior to verify and re-build their internal

models of the task environment. This type of transient switches to the exploratory regime

would be adaptive in circumstances where the environments frequently change between differ-

ent types of models such that persisting with a fixed model might decrease the chance of sur-

vival. For example, this might be seen in situations where the presence of predators might be

unpredictable with patterns shifting between seasons, or where when food sources might vary

drastically over time due to unpredictable weather patterns.

Overall, our study highlights the use of multiple transition modes in reversal learning and

calls for a focus on the problem of state segmentation in rodent behavioral studies. The meth-

ods developed in the paper can be leveraged in investigations of the neural mechanisms that

govern these distinct modes, as well as the plasticity of these circuits during the transition

between model-free and inference-based behavior. These two types of behavior involve vastly

different neural circuits that engage different sub-divisions of the basal ganglia and frontal cor-

tex [5,7,54,55]. Our modeling framework here highlights the highly dynamic nature of the

strategy switches, suggesting that switches between these sub-circuits in the brain might occur

frequently during single behavioral sessions. Since encoding of task variables is highly state-

dependent in many behavioral contexts [56–60], the state information provided by the

blockHMM might be particularly valuable for the investigation of state-dependent encoding of

task variables such as choice, reward, and value varies across different inferred hidden states.

More broadly, blockHMM can also be used to analyze the behavior and neural activity

involved in probabilistic foraging tasks [7,44], as well as decision-making tasks that involve

alternating blocks with opposing rule sets [61–63]. The state segmentation approach will also

be a valuable tool for perturbation experiments, with the power to reveal shifts in composition,

order or transition probabilities between these modes, thus augmenting existing methods for a

much richer and complete view of rodent behavior during reversal learning.

Materials and methods

Ethics statement

All experimental procedures performed on mice were approved by the Massachusetts Institute

of Technology Animal Care and Use Committee and conformed to National Institutes of

Health guidelines.

Animals

Mice were housed on a 12 h light/dark cycle with temperature (70 ± 2 ˚F) and humidity (30–

70%) control. Animals were group-housed before surgery and singly housed afterwards. Adult

mice (2–6 months) of either sex were used for these studies (12 females and 9 males). Mice

belonged to four lines: C57BL/6J: 7 animals, Ai184D (B6.Cg-Igs7tm148.1(tetO-GCaMP6f,

CAG-tTA2)Hze/J), Jackson #030328: 5 animals; Ai162D (B6.Cg-Igs7tm162.1(tetO-GCaMP6s,

CAG-tTA2)Hze/J), Jackson #031562: 7 animals; B6.129(Cg)-Slc6a4tm1(cre)Xz/J, Jackson

#014554: 2 animals.

Surgical procedures

Surgeries were performed under isoflurane anesthesia (3–4% induction, 1–2.5% maintenance).

Animals were given analgesia (slow release buprenex 0.1 mg/kg and Meloxicam 0.1 mg/kg)

before surgery and their recovery was monitored daily for 72 h. Once anesthetized, animals

were fixed in a stereotaxic frame. The scalp was sterilized with betadine and ethanol. The skull
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was attached to a stainless-steel custom-designed headplate (eMachines.com) using Metabond.

Animals were allowed to recover for at least 5 days before commencing water restriction for

behavioral experiments.

Behavioral apparatus and task training

The training apparatus and software for running the experiments were adapted from the

Rigbox framework for psychophysics experiments in rodents [64,65]. Mice were head-fixed on

the platform (built from Thorlabs hardware parts) and their body placed in a polypropylene

tube to limit the amount of movement and increase comfort. Their paws rested on a vertical

Lego wheel (radius 31 mm) which was coupled to a rotary encoder (E6B2-CWZ6C, Omron),

which provided input to a data acquisition board (BNC-2110, National Instruments). The data

acquisition board also provided outputs to a solenoid valve (#003-0137-900, Parker) which

controlled the water reward delivery.

After mice recovered from surgery, they were placed under water restriction for 1 week,

with daily water given by HydroGel (Clear H2O). The initial amount of HydroGel was equiva-

lent to 2mL of water a day, and this decreased gradually until mice received an amount equiva-

lent to 40 mL/kg each day. Mice were weighed weekly and monitored signs of distress during

the course of training. In the case of substantial weight loss (>10% loss weekly) or decrease in

body condition score, the restricted water amount was increased accordingly. Mice were han-

dled daily during the initial 1-week water restriction period for ~10 minutes each day. They

were then allowed to explore the apparatus and given water manually by a syringe on the plat-

form. If mice did not receive their daily water amounts during training, they were given the

remaining amount as hydrogel (Clear H2O) in their home cage.

When mice were comfortable with the setup, they were head-fixed on the platform and

given small water rewards of 4 μL from a lick spout every 10 seconds, for a total duration of 10

minutes. This duration was increased to 20 minutes, and 40 minutes on the two subsequent

days. The wheel was fixed during this protocol. On the next day, mice were trained on the

movementWorld protocol, with the wheel freely moving. Here, each trial was signal with an

auditory tone (0.5s, 5 kHz), following which movements in any direction crossing the move-

ment threshold of 8.1˚ rotation were rewarded with 4 μL of water. Mice then had to remain

stationary for 0.5 s before the next trial starts. This discouraged a strategy of continuous rota-

tion of the wheel.

After mice became comfortable with this stage and consistently obtained at least 0.6 mL of

water each session, they were taken to the final task stage, blockWorldRolling. We started track-

ing the performance of animals when they entered this stage, with session 1 being the first day

of training on blockWorldRolling. Animals were trained until no performance improvements

were observed, for a maximum of 30 sessions.

In the blockWorldRolling stage, each trial began with an auditory tone (0.5s, 5 kHz). During

a delay period of 0.5 s from the trial tone onset, movements of the wheel were discounted.

After this window, the movement period started, where movements of the wheel past a speci-

fied threshold were recorded. The threshold was fixed at 8.1˚ in the first session of blockWorl-
dRolling and subsequently increased to 9.5˚, and 10.8˚ on the next days. The trials were

grouped into blocks of trials of 15–25 trials, with lengths of the blocks sampled uniformly at

random. The blocks alternated between the “left” and “right” state. In the “left” state, left wheel

turns were rewarded with probability 100% and right wheel turns were not rewarded. In the

“right” state, right wheel turns were rewarded with probability 100% and left wheel turns were

not rewarded. If mice made the correct movement, they were given a 4 μL water reward. For

unrewarded trials, a white noise sound was played for 0.5 s, followed by a time-out of 1 s. After
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the trial feedback was given, an inter-trial interval (ITI) of 0.5 s elapsed before the next trial

started. The ITI was gradually increased to 1 s once animals performed well in the task. If mice

didn’t make a choice within 20 seconds, the trial was aborted, signaled by a white noise and 1-s

time-out period (similar to an error trial). After the length of the block has passed, if the rolling

performance of the animal in the last 15 trials was above 75%, the state of the block would flip

and the next block continued. Otherwise, the block continued until the rolling performance in

the last 15 trials in the block passed 75%. The session is terminated when the average reaction

time in the final 5 trials of the session went above 10 seconds.

Analysis of animal performance

Performance in each session was defined as the number of rewarded trials divided by the total

number of trials in the session. Within each block, the number of persistent errors was defined

as the number of errors at the start of each block before a correct response was made in that

block. The late performance was defined as the fraction of correct responses in the last 10 trials

of the block. The left–right bias in performance of each animal (S1C and S1D Fig) was defined

as the fraction of correct responses in all trials on leftward blocks minus the fraction of correct

responses in all trials on rightward blocks.

To parametrically describe the rate of switching of animals, we calculated the average accu-

racy an, where n = 1, 2, 3, . . ., defined as the average accuracy of all trials occurring at position

n in the block, across all blocks of the session. We then fitted a logistic regression model of the

form

an ¼ �þ
1 � 2�

1þ expð� aðn � sÞÞ
ðM:1Þ

where ��, α and s are free parameters representing the lapse rate, slope and offset, respectively.

The parameters were jointly fit with the Python function scipy.optimize.minimize(), with con-

straints s�0, α�0, 0����0.5.

To compare the animals’ performance and parameters to a benchmark, we simulated the

behavior of a “win-stay, lose-shift” agent which makes a single mistake at the beginning of each

block. This agent was simulated for a total of 25 blocks. We calculated the number of persistent

errors and late performance the same way as for mice. Similarly, the logistic regression model

was fitted to the win-stay lose-shift agent’s performance in the same way as described above.

Quantification of performance variation

To quantify the variability in block-wise performance for each animal, we computed the

block-by-block performances by determining the fraction of correct choices in each block. We

then computed the standard deviation of these block performances across all blocks in the last

5 training sessions of each animal. This gives us the “observed” standard deviation sobserved for

each animal (black vertical lines in Fig 2B).

We then compared sobserved to the standard deviation that would be expected under the

hypothesis that animals only use a single strategy. Under this hypothesis, we fitted the behavior

in the last 5 training sessions to a single transition curve with parameters ��, α and s (see previ-

ous section). We then simulated the behavior of an artificial agent that obeys the transitions

governed by this fitted curve: on each trial n in the block, the agent would select the correct

choice with probability an. We determined the block-wise standard deviation in performance

of the simulated agent, ssimulated, repeating this simulation for a total of 100 times to obtain the

distribution of this measure (box plots in Fig 2B). The reported p value was the probability that

sobserved> ssimulated according to the bootstrap distribution.

PLOS COMPUTATIONAL BIOLOGY Mixture of learning strategies in reversal learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011430 September 14, 2023 18 / 28

https://doi.org/10.1371/journal.pcbi.1011430


For the visualization of block-by-block parameters of the switching dynamics (Fig 2B), we

estimated the lapse rate of each block by maximum-likelihood estimation. We fitted a logistic

regression model of the observed choices, yn, of the block against a function of the form

pn ¼ �þ
1� 2�

1þexpð� aðn� sÞÞ, and determined the combination of parameters ��, α, s that maximizes the

likelihood of the observed choices. To visualize the expected mean and standard deviation in

performance and lapse rate assuming the mouse uses a single strategy, we simulated the uni-

form strategy as described above for the same number of blocks as in the experimental ses-

sions. The “expected” error bars are centered at (E, P), where E is the mean lapse rates and P is

the mean performance across all simulated blocks. The magnitudes of the horizontal and verti-

cal error bars represent the standard deviations of the lapse rates and performances across all

simulated blocks, respectively.

Block Hidden Markov Model

The blockHMM inference procedure was implemented based on the existing ssm toolbox that

was previously developed for a wide range of Bayesian state-space models [66].

We added an implementation to this toolbox by specifying a new set of transition and

observation probabilities which specify the blockHMM process. Each observation was defined

by three vectors, α, s and �� representing the parameters of the sigmoidal transition function

for each of the K HMM modes (each vector has dimension K x 1). The vectors were initialized

to αi = 4, si = 0.2, ��i = 0.3 for all 1�i�K.

Given the hidden state in block i, i.e. given zi = k, the joint log likelihood of the observed

choices in the block is defined via the sigmoidal transition function specified by parameters αk,

sk, ��k

sk tð Þ ¼
1 � 2�k

1þ expðakðt � skÞÞ
þ �k ðM:2Þ

where t = 1, 2, . . ., T enumerates the position of the trials in the block.

The log-likelihood for a “signed” choice yt (the product of choice ct and hidden state ut) is

that of a Bernoulli random variable with a rate of σk(t).

log L ðytjak; sk; �kÞ ¼ yt log skðtÞ þ ð1 � ytÞlogð1 � skðtÞÞ ðM:3Þ

The joint log-likelihood of the observed choices in the block i is the sum of the log-likeli-

hoods of individual trials

log P ðyjzi ¼ kÞ ¼
XT

t¼1
log L ðytjak; sk; �kÞ ðM:4Þ

The joint log-likelihood for the whole session is the sum of the log-likelihood in individual

blocks. The hidden states evolved according to a Markovian process with stationary transition

governed by a transition matrix T with dimension K x K.

The blockHMM was fit with an Expectation-Maximization (EM) algorithm. The hidden

states were initialized based on k-means clustering with K clusters. The implementation of the

EM algorithm was the same as described previously for the ssm toolbox. We used the L-BFGS

algorithm for the M-step when updating the values of α, s and ��, with constraints s�0.01,

α�0.01, 0.01����0.5.

To evaluate the cross-validated log-likelihood (Fig 3D), we split the data into 80% training

set and 20% test set. The blockHMM was run on the training set and the log-likelihood Ltest
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was evaluated on the test set. We normalized this cross validated log-likelihood by

Lnorm ¼
Ltest � L0

ntestlogð2Þ
ðM:5Þ

where L0 is the cross-validated log-likelihood of a null model (a Bernoulli(p) model where p is

the observed fraction of trials where yt = 1), ntest is the number of trials in the test set.

Synthetic agent simulation

The synthetic agent (Fig 3C–3G) was simulated with K = 3 HMM modes with parameters s1 =

4, α1 = 0.2, ��1 = 0.3; s2 = 1, α2 = 0.8, ��2 = 0.15; s3 = 9, α3 = 1.5, ��3 = 0.05. The true transition

matrix of the agent was

T ¼

0:966 0:003 0:031

0:007 0:954 0:039

0:025 0:020 0:955

2

6
4

3

7
5 ðM:6Þ

The behavior was generated for N = 1000 blocks, each block consisting of 30 trials.

BlockHMM fitting to animal behavior

For each animal, we concatenated the behavioral choices from all training sessions into a B x T
matrix where B is the total number of blocks from all the sessions, and in each block, we con-

sidered the first T = 15 choices of the animal. The blockHMM fitting procedure was run on

this matrix for K = 1, 2, 3, . . ., 6 modes. We chose the value of K that maximized the normal-

ized log-likelihood of the test set (Lnorm; S2A Fig).

After K is determined, we ran the blockHMM fitting procedure with 3,000 iterations, start-

ing from five different random seeds and selecting the run that results in the highest cross-vali-

dated log-likelihood. After fitting the blockHMM model, we recovered parameters sk, αk, ��k

for individual modes in the model. We determined the foraging efficiency Ek by numerically

integrating the area under the curve of the choice transition function (with a step size of 0.1)

Ek ¼

Z 25

1

skðtÞdt ðM:7Þ

Based on the histogram of the mode efficiencies (Fig 4B), which is multi-modal, we defined

cut-offs for dividing the modes into three regimes: low performance (below 65%), intermedi-

ate performance (65–84%) and high performance (above 84%). Based on the distribution of

lapse and offset (Fig 4C), the intermediate-performance group was further split into two sub-

groups: one with high lapse (lapse rate> 0.1), and one with high offset (lapse rate� 0.1). Each

mode in the behavior of the animals was classified into one of these four groups based on the

above criteria.

Simulations of Q-learning and inference-based behavior

Forward simulations. We simulated an artificial environment that alternates between two

states, “left” and “right”, in blocks of trials. The first block was chosen at random to be in the

“left” or “right” state, and the state identity flipped for each subsequent block. At the start of

each block, we determined the number of trials in the blocks, N, by sampling an integer at ran-

dom in the range [15,25]. We then simulated N trials in the block. In each trial, the agent

selected an action and received feedback from the environment. If the block was in the “left”

state, left actions yielded reward with probability 100% and right actions yielded reward with

PLOS COMPUTATIONAL BIOLOGY Mixture of learning strategies in reversal learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011430 September 14, 2023 20 / 28

https://doi.org/10.1371/journal.pcbi.1011430


probability of 0%. Conversely, if the block was in the “right” state, left actions yielded reward

with probability of 0% and right actions yielded reward with probability of 100%.

Each Q-learning agent was defined by two parameters, the learning rate γ and exploration

rate ��. For our simulations, we simulated a 25 x 20 grid of parameters within the range

0.01�γ�1.4, and 0.01����0.5. On each trial, the Q-learning agent implemented a Q-value

update and selected actions with an ��-greedy policy. The agent maintained two values associ-

ated with the two actions, qL for left actions and qR for right actions. We initialized qL = qR =

0.5. On each trial, the agent updated these values according to

qi  qi þ gðr � qiÞ ðM:8Þ

where r is the feedback of the trial (r = 1 for rewarded actions and r = 0 for non-rewarded

actions). The Q-learner chose the higher-valued action with probability 1 - ε, and selected

actions at random (with probability 50% for each choice) on a small fraction ε of trials.

Each inference-based agent held an internal model which consisted of two hidden states, L
and R, that corresponded to the unobserved hidden states, “left” or “right”, of the environ-

ment. The internal model was defined by two parameters, Pswitch and Prew according to

Pðsiþ1 ¼ Rjsi ¼ LÞ ¼ Pðsiþ1 ¼ Ljsi ¼ RÞ ¼ Pswitch ðM:9Þ

Pðsiþ1 ¼ Ljsi ¼ LÞ ¼ Pðsiþ1 ¼ Rjsi ¼ RÞ ¼ 1 � Pswitch ðM:10Þ

Pðri ¼ 1jsi ¼ L; ci ¼ LÞ ¼ Pðri ¼ 1jsi ¼ R; ci ¼ RÞ ¼ Prew ðM:11Þ

Pðri ¼ 1jsi ¼ L; ci ¼ RÞ ¼ Pðri ¼ 1jsi ¼ R; ci ¼ LÞ ¼ 1 � Prew ðM:12Þ

where si refers to the hidden state on trial i and ci refers to the choice on trial i.

That is, the evolution of the hidden states followed a Markov process with probability Pswitch

of switching states and 1 −Pswitch for remaining in the same state on each trial. For our simula-

tions, we simulated a 15 x 10 grid of parameters within the range 0.01�Pswitch�0.45, and

0.55�Prew�0.99.

We derived a recursive update for the agent’s posterior belief about the current world state,

given previous choices and feedback. Let PLðtÞ ¼ ðst ¼ Ljc1; r1; c2; r2; . . . ; ct� 1; rt� 1Þ and

PRðtÞ ¼ ðst ¼ Rjc1; r1; c2; r2; . . . ; ct� 1; rt� 1Þ. Then

PL tð Þ ¼
1

O

X

i¼L;R
Piðt � 1Þ P rt� 1jst� 1 ¼ ið Þ P st ¼ Ljst� 1 ¼ ið Þ ðM:13Þ

PR tð Þ ¼
1

O

X

i¼L;R
Piðt � 1Þ P rt� 1jst� 1 ¼ ið Þ P st ¼ Rjst� 1 ¼ ið Þ ðM:14Þ

where O is a normalization factor to ensure PL(t)+PR(t) = 1.

We initialized PL(0) = PR(0) = 0.5. On each trial, the agent selected the left action if PL(t)>
0.5, the right action if PL(t)<0.5, and acted randomly otherwise.

We simulated an ensemble of Q-learning and inference-based agents with parameters as

described above. For each agent, the behavior was simulated for a total of 1000 blocks. Parame-

ters of transition dynamics, lapse rate ��, slope α and offset s, were determined similarly to

rodent behavior (see section Analysis of animal performance above).

Backward inference. The above fitting procedure was performed for all 650 agents (25 x 20

Q-learning and 15 x 10 inference-based agents). To cluster the behavior of artificial agents into

groups with qualitatively distinct transition curves, we pooled the four behavioral features, ��,
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α, s, and E, from these agents to form a 4 x 650 feature matrix, representing 4 features per

agent and 650 agents. We applied a density-based clustering method to segment the cloud of

points into distinct domains (S6 Fig). First, the four-dimensional features were embedded into

a two-dimensional t-SNE space using a Euclidean distance metric. 2-D histograms of the data

points in the t-SNE space were formed, and a watershed algorithm was run on the resulting

heat map to identify the clusters of high density in this point cloud. We found six distinct clus-

ters using this method. The identities of these clusters were then mapped back to the location

in the Q-learning or inference-based parameter spaces.

To validate whether these six classes were meaningful classifications of the artificial agents,

a k-nearest neighbor (kNN) decoder was trained to predict the behavioral class of agents (Q1-

4, IB5-6) based on the observed behavioral transitions. We first generated a synthetic dataset

used for training the classifier. We simulated the behavior of each Q-learning and inference-

based agent in 50 synthetic experimental sessions with 20 block transitions per session. For

each synthetic session, we obtained four parameters of the observed behavior, lapse ��, slope α,

offset s, and efficiency E. The kNN was trained to predict the class identity (Q1-4, or IB5-6)

given these inputs. To balance the number of training examples for different classes in the data

set, we subsampled within each class so that each class contains the same number of examples.

We split this data into a training set (containing 80% of the data) and a test set (20% of the

data). The kNN decoder was fitted on the training set and evaluated on the test set. The accu-

racy of the decoder was measured both by the fraction of correctly labeled examples per

regime, and by the Matthews Correlation Coefficient.

Decoding the algorithm underlying the blockHMM transition modes

As described above, each mode in the blockHMM was defined by three parameters sk, αk, ��k.

The foraging efficiency Ek was also determined for each mode (see BlockHMM fitting to animal
behavior). Together, the four parameters sk, αk, ��k, Ek were given as inputs into the kNN

decoder that was trained in the previous section to infer the behavioral regime (Q1-4, IB5-6)

of each of the HMM modes.

Identification of early switches

To investigate whether some blockHMM modes might correspond to negative offsets (s< 0),

we included choices of the animal on three trials prior to each block reversal (S9 Fig). This

results in a B x T matrix where B is the total number of blocks from all the sessions, and T = 18

choices per block (3 choices prior to reversal + 15 choices after the reversal). The number of

modes, K, was determined again for each animal using the cross-validation procedure

described in “blockHMM fitting to animal behavior”. Using the selected value of K, the

blockHMM fitting procedure was carried out on the B x T matrix as described in “blockHMM

fitting to animal behavior”, yielding parameters sfit, α, ε, with sfit> 0 being the offset with

respect to t = –3 trials prior to block reversal. The true offset s (with respect to t = 0) was deter-

mined by subtracting 3 from sfit..
In S9A and S9B Fig, the behavioral regimes “low-performing”, “intermediate-performing,

high-lapse”, “intermediate-performing, high-offset”, “high-performing” are defined using the

same criteria and thresholds as specified in “blockHMM fitting to animal behavior”.

Supporting information

S1 Fig. Quantification of sources of the sub-optimal performance compared to the win-

stay-lose-switch strategy. (a) Quantification of late performance of all mice across all sessions

(mean ± s.e.m, n = 21 mice). Late performance was calculated by averaging each mouse’s
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performance in the last 10 trials of each block on each session. (b) Quantification of number of

initial errors for all mice across all sessions (mean ± s.e.m, n = 21 mice). Dashed lines in (a)

and (b) indicate optimal win-stay-lose-switch strategy (WSLS). WSLS strategy should yield

100% late performance, and should only incur 1 initial error per block. (c) Individual animal

average performance on the last 5 sessions (shown on y-axis) and average left–right bias on the

last 5 sessions (shown on x-axis). Each point represents one animal with the annotated ID.

Points are colored by the number of block HMM modes of each animal (Figs 4E and 6A). (d)

Difference in performance between left and right blocks (mean ± standard deviation) across

all animals on each training session. (e) Performance across training sessions

(mean ± standard deviation) for male (n = 9; black) and female mice (n = 12; blue). (f) Perfor-

mance of male and female mice (mean ± standard deviation) across three session groups: ses-

sions 1–10, sessions 11–20, and sessions 21–30.

(DOCX)

S2 Fig. Quantification of sex differences in the HMM modes and performance-based

behavioral regimes. (a) Selection of the number of modes, K, used for blockHMM fitting.

Each panel shows the normalized cross-validated log-likelihood for different values of K rang-

ing from 1 to 6. The value of K that maximized the cross-validated log-likelihood is indicated

by the vertical dashed line. (b) Distribution of the number of blockHMM modes in male and

female mice. (c) Composition of performance-based behavioral regimes in male and female

mice. Both female and male mice used four behavioral regimes during their learning.

(DOCX)

S3 Fig. BlockHMM transition matrices for individual experimental animals. In each

matrix, entry Mij shows the transition probability between states P(zt = j | zt-1 = i). Each state is

labeled with the decoded behavioral strategy (Q1-Q4 or IB5-6) shown in Fig 6A.

(DOCX)

S4 Fig. Variations of four key behavioral benchmarks across the Q-learning parameter

space. a) Illustration of the sigmoidal transition function with four parameters: switch offset s,

switch slope α, lapse ε, and overall foraging efficiency E. b) Behavioral features for Q-learning

agents in a 100–0 environment. We simulated the behavior of 25 x 20 Q-learning agents with

different values of the learning rate γ and exploration parameter ε, and measured the four

behavioral features for each agent by fitting the average transition function over 1000 blocks to

a sigmoidal function. c) Example behavior of three Q-learning agents with a fixed ε = 0.1 and

varying learning rate γ. Top row shows the behavior of each agent over 100 blocks (each row

represents the outcomes of all the trials within a single block, red: incorrect choice, blue: cor-

rect choice). Bottom row shows the average transition function (black curve, mean ± standard

deviation, n = 1000 blocks), and the fitted sigmoid (blue curve). d) Same as c, but for three Q-

learning agents with fixed γ = 1.2 and varying ε.

(DOCX)

S5 Fig. Variations of four behavioral benchmarks across the inference-based parameter

space. a) Map of variations in offset s, slope α, lapse ε and efficiency E, for inference-based

agents in the parameter space. The simulations were performed on an ensemble of 15 x 10

inference-based agents with different values of the internal model parameters Prew and Pswitch.

b) Example behavior of three inference-based agents taken from the diagonal of the parameter

space (dashed line, agents are represented by crosses in panel a plots), illustrating the perfor-

mance over 100 blocks (top row), and average transition function (bottom row,

mean ± standard deviation, n = 1000 blocks).

(DOCX)
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S6 Fig. Subdomains of model-free and inference-based behavior. Approach to segment the

model-free and inference-based parameter spaces into distinct behavioral regimes. We per-

formed a computational simulation of an ensemble of Q-learning and inference-based agents

taken from grids that spanned the entire two spaces. For each agent, we obtained the transition

function and four behavioral features characterizing the sigmoidal fit. We pooled the features

of all agents into a feature matrix and applied a density-based approach to cluster these features

into six regimes. The regime identities were visualized for all points in the two parameter

spaces. After clustering the points, we identified four regimes in the Q-learning space (Q1-4)

and two regimes (IB5-6) in the inference-based space.

(DOCX)

S7 Fig. Evolution of behavioral strategies of individual mice. Stacked bar plots in each panel

show the composition of the behavioral strategies (Q1-Q4, IB5-IB6) of a single animal over the

course of training. Black line on the panel shows the animal’s performance in each session.

(DOCX)

S8 Fig. Sex differences in composition of blockHMM modes. (a) Average frequency

(mean ± standard deviation) of decoded blockHMM behavioral strategies (Q1-Q4, IB5-IB6)

across training sessions for female (top panel) and male mice (bottom panel). (b) Mean com-

position of behavioral strategies in male and female mice across three session groups: sessions

1–10 (top), sessions 11–20 (middle), and sessions 21–30 (bottom panel). (n.s: p> 0.05, Mann-

Whitney U-test).

(DOCX)

S9 Fig. Identification of behavioral modes corresponding to early switches. (a) Distribution

of blockHMM mode performances across all experimental animals. BlockHMM modes are

classified into low, intermediate and high-performing groups as in Fig 4B. (b) Lapse and offset

parameters of individual behavioral modes across all animals. Modes are classified as low-per-

forming (blue), intermediate-performing, high-lapse (yellow), intermediate-performing, high-

offset (pink), high-performing (green). A subset of high-performing modes with negative off-

set are labeled as “Early” switches (black circles). The rest of the high-performing modes are

labeled as “Regular” switches. (c) Block transition dynamics of the behavioral regimes identi-

fied in (b). Red lines in the bottom panels correspond to the High-performing modes with

negative offsets. (d) Frequency of each class of blockHMM modes over the course of training.

(DOCX)
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