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SUMMARY
Goal-directed locomotion requires control signals that propagate from higher order areas to regulate spinal
mechanisms. The corticosubthalamic hyperdirect pathway offers a short route for cortical information to
reach locomotor centers in the brainstem.We developed a task in which head-fixedmice run to a visual land-
mark and then stop and wait to collect the reward and examined the role of secondary motor cortex (M2) pro-
jections to the subthalamic nucleus (STN) in controlling locomotion. Our behavioral modeling, calcium imag-
ing, and optogeneticsmanipulation results suggest that theM2-STN pathway can be recruited during visually
guided locomotion to rapidly and precisely control the pedunculopontine nucleus (PPN) of the mesence-
phalic locomotor region through the basal ganglia. By capturing the physiological dynamics through a feed-
back control model and analyzing neuronal signals in M2, PPN, and STN, we find that the corticosubthalamic
projections potentially control PPN activity by differentiating an M2 error signal to ensure fast input-output
dynamics.
INTRODUCTION

Coordinated movement, and in particular, locomotion, is

enabled by distributed spinal and brain circuits. Although the ex-

ecutive mechanisms for locomotion are implemented in the spi-

nal cord (Goulding, 2009; Grillner, 2003; Kiehn, 2006, 2016),

locomotion is importantly regulated by supraspinal circuitry (Fer-

reira-Pinto et al., 2018; Kim et al., 2017; Ryczko and Dubuc,

2013). Brainstem circuits can induce locomotion upon targeted

stimulation (Caggiano et al., 2018; Capelli et al., 2017; Josset

et al., 2018; Roseberry et al., 2016); however, goal-directed loco-

motion, especially when guided by sensory information, requires

control signals from higher order areas directed toward the spi-

nal cord (Arber and Costa, 2018; Drew et al., 2004; Grillner et al.,

2008). The repertoire of higher order signals required to regulate

locomotion, and the neural circuitry that enables such signaling,

are particularly unclear in behavioral settings (Arber and Costa,

2018). The control principles and substrates governing action

can further suggest principles for cognitive control, particularly

if the same neural substrate supports multiple functions.

While the regulation of locomotion is mainly implemented in

the brainstem, movement planning is considered to arise at the

level of the cortex (Churchland et al., 2010; Economo et al.,

2018; Shenoy et al., 2013; Svoboda and Li, 2018; Wong et al.,

2015). The basal ganglia are situated between these two centers

and importantly regulate voluntary movement (Bolam et al.,

2000; Graybiel, 2000). The direct and indirect pathways, initiated

from the striatum, bidirectionally control locomotion (Roseberry

et al., 2016) through the substantia nigra pars reticulata (SNr)
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and its control over the mesencephalic locomotor region (MLR)

(Freeze et al., 2013; Liu et al., 2018). The basal ganglia addition-

ally admit a cortical input straight to the subthalamic nucleus

(STN) (Nambu et al., 2000, 2002), which projects to SNr (Hamani

et al., 2004). This pathway has been called the hyperdirect

pathway, and evidence across species, notably humans, has

shown stop activity at the source of this pathway in reactive

stop-signal or go/no-go tasks (Aron et al., 2016; Aron and Pol-

drack, 2006; Eagle et al., 2008; Wessel and Aron, 2017; Chen

et al., 2020). The STN itself is considered pivotal in stopping

movement (Hamani et al., 2004; Schmidt et al., 2013). In rodents,

reducing the excitatory output of STN induces hyperlocomotion

(Schweizer et al., 2014), and lesions of STN induce impulsive re-

sponding (Baunez and Robbins, 1997; Eagle et al., 2008; Uslaner

and Robinson, 2006). More recently, optogenetic studies in mice

show that areal activation of STN excitatory cells disrupts self-

initiated bouts of licking (Fife et al., 2017) and that the activation

and inactivation of STN-projecting prefrontal cortex neurons

reduced and increased inappropriate licking (Li et al., 2020).

Bilateral optogenetic inhibition and activation of STN has also

been shown to increase and decrease locomotion, respectively

(Guillaumin et al., 2021), and such effects can be mediated by

certain molecularly defined subpopulations of STN neurons (Pa-

rolari et al., 2021). Thus, the hyperdirect pathway stands as an

important short-latency cortico-brainstem route for fast control

of locomotion.

Goal-directed locomotion implies a proactive locomotor plan

that is implemented to achieve a needed goal. From an engineer-

ing standpoint, we can enforce a desired goal trajectory in a
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Figure 1. Mice were trained to run, stop, and wait at visual landmarks to collect reward

(A) Schematic showing the task design. Position is defined in terms of track units (t.u.), with 200 t.u. corresponding to 12 cm.

(B) Graph showing the distance at wait from starting position versus the distance from the landmark at the beginning of each trial. The color gradient indicates the

frequency of stopping at the corresponding distance. The white lines indicate the beginning and end of the landmark. The distance of the landmark from the initial

position does not affect the final stop position of the animal, indicating that the animals are using the visual cues, instead of relying on other mechanisms. N = 10

mice, 3 sessions each, between 100 and 250 hit trials each.

(C) Example data showing the position of a mouse on the track and its underlying speed for 9 trials. The blue- and green-shaded area indicates landmark position

and potential starting position, respectively.
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system through feedback control (Aström and Murray, 2010).

Feedback control is based on an error signal: a measured

discrepancy betweenwhat wewould like the system to do (refer-

ence) and what it is actually doing (output). By processing such a

signal through a controller and feeding it to the system (plant) we

intend to control, we ensure adequate performance (Dahleh

et al., 2004; Oppenheim et al., 1996). If such a principle is imple-

mented in neural circuits, then we would expect surges in neural

signals upon sudden changes in planned locomotion trajec-

tories, and such signals would drive movement corrections to

ensure fast control.

We thus developed a task in which head-fixed mice run to a

visual landmark, then stop and wait to collect the reward, and

examined the projections from the secondary motor cortex

(M2) to STN. We hypothesized that these projections send

rapid signals that halt locomotion. Here, we report the exis-

tence of such signals sent from M2 to STN that halt visually

guided locomotion. This positions the hyperdirect pathway as

a controller onto the MLR, and particularly its pedunculopon-

tine nucleus (PPN), in the midbrain. Furthermore, using dynam-

ical systems and control engineering methods, we find that the

hyperdirect pathway potentially controls the MLR/PPN by

differentiating an M2 error signal to ensure fast input-output

dynamics.
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RESULTS

Mice were trained to run, stop, and wait at visual
landmarks to collect reward
We developed a task that allowed us to examine proactive visu-

ally guided locomotion stops (Figure 1A). A head-fixed mouse

was positioned on a self-propelled treadmill in a virtual runway

flanked on both sides by a continuous streak of light-emitting di-

odes (LEDs). At the start of a trial, the animal was presented with

a visual landmark consisting of a lit contiguous subset of LEDs, at

a variable position from the animal. The movement of the tread-

mill was coupled to themovement of the landmark; as themouse

rotated the treadmill to move forward, the landmark approached

the mouse. The mouse was then required to run and stop at the

landmark, holding its position for 1.5 s to collect the reward. If the

mouse waited at the landmark for the required time, then it

received a reward tone and a water reward simultaneously. If

the mouse either ran to the end of the runway, bypassing the

landmark, or failed to stop at the landmark within 30 s, then it

received a miss tone. After the reward or miss tone, all of the

LEDswere turned off and a new trial started after 1 s, with a land-

mark reappearing (Video S1).

We ensured that the distance over which the landmark posi-

tion randomly varied was greater than the width of the landmark.
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Figure 2. The behavior suggests a sudden

switch in locomotion state

(A) Left: Formulation of the behavior as a minimum-

time optimal-control problem. The mouse is tasked

to select a locomotor plan (ut) that minimizes the

time required to collect reward. The locomotor plan

dictates the speed of the animal, and the relation is

governed by a first-order ordinary differential equa-

tion, parametrized by a time constant t. Further-

more, the locomotor plan, and therefore the speed,

are bounded and cannot be infinite. Right: The

optimal solution is a bang-bang control policy,

where ut starts at its maximum and suddenly

switches to its minimum.

(B) Examples of speed traces in landmark-stop

windows aligned to the last peak in velocity before

stopping, indicating the ‘‘switching point’’ (30 trials

drawn from all of the sessions across animals. N =

10 mice, 3 sessions each).

(C) Graph of the average speed, position, lick rate,

and model fits (dashed line) to actual data (contin-

uous line) for speed and position in the period

immediately following the switching point (N = 10

mice, 3 sessions each). Modeled position and speed using the equation in (A) identified a time constant t = 63.75 ms are depicted with dark blue and red dashed

lines. Predicted position and speedwith t = 1 s are depicted with light blue and light red dashed lines. The shaded regions correspond to the standard deviation of

the sampled distribution. N = 10 mice, 3 sessions each.
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This prevented the animal from relying on tracking the distance

to the landmark internally, ensuring that the task was indeed

visually guided (Figures 1B, S1A, and S1B). The task elicited

an on-off locomotion pattern (Figures 1C and S1A), and we care-

fully examined the stops. Furthermore, this pattern was a learned

behavior (Figures S1F–S1I) as evidenced by the increase in stop-

wait time as training sessions progressed (Figure S1F) and an in-

crease in hit rates in a simpler version of the task during the first

stages of training in which landmarks were not present (Fig-

ure S1G). Our task was designed to elicit short bouts of runs

and stops, instead of lengthy periods of locomotion (STAR

Methods). Our task design was intended to elicit locomotion in

the ‘‘moderate velocity’’ regime (as opposed to high velocity be-

haviors such as escape behavior) with the goal of engaging PPN

in the MLR, and more likely basal ganglia circuitry, instead of the

cuneiform nucleus (Caggiano et al., 2018; Josset et al., 2018).

Importantly, the trajectory of the speed signal was not affected

by the distance of the landmark (Figure S1J) if kept in close

range. In all subsequent experiments, the trajectory of the stop

was preserved throughout (Figure S1K).

The behavior suggests a sudden switch in locomotion
state
We modeled the behavior of the animal in a single trial as an

optimal-control problem (Figure 2A; Methods S1A). Starting

from an initial position away from the landmark, the mouse

was tasked to select a locomotor plan that dictates its locomo-

tion pattern so as to minimize time to collect the reward, thereby

maximizing the reward in a session. We then solved this control

problem for the optimal solution via Lagrangian methods

(Methods S1A) and found it to be a bang-bang control policy,

in which the locomotion plan abruptly switches from amaximum

value to a minimum value. Therefore, to collect the reward as

soon as possible, the animal should accelerate as much as
possible up to a switching point, which likely occurs before the

animal arrives at the landmark, then suddenly brake as much

as possible to arrive at a full halt at the landmark. This model

yields two features. First, the optimal solution suggests that there

is an essential switching point in behavior: if the brain generates

a signal to stop, then it should occur around this switching point.

Second, themodel depends on a time constant and by changing

its value, we can modulate how quickly the animal stops. Signa-

tures of these strategies were later analyzed in the neurophysio-

logical recordings.

From each session, we recovered time windows around all of

the stops at the landmark, which we called landmark-stop win-

dows, and we let the switching point in each correspond to the

time point at which the speed of the animal last peaked before

stopping. We then aligned all of the speed trajectories in the

time windows along their switching point (Figure 2B). The model

fittedwell to the average trajectory with an average time constant

t of 63.75ms (Figures 2C and S1C–S1E; STARMethods). Impor-

tantly, having a small enough t was essential for the animal to

stop in a timely manner at the landmark. For instance, if t were

equal to 1 s, then the animal would not stop in time and would

miss the landmark (Figure 2C). (The velocity fluctuated while

the animals were running, and we refer the reader to Methods

S1A for a discussion of the model.)

Activating M2 axons in STN leads to stopping
Our behavioral model indicates a switching point in behavior and

suggests that the brain generates a signal at that time. We hy-

pothesized that the M2-STN pathway may be sending a signal

to achieve rapid locomotion stops (see Methods S1B). Thus,

we asked: If activity is sent along the M2-STN pathway, does it

then lead the animal to stop locomoting?

To address this question, we injected an adeno-associated vi-

rus (AAV) expressing channelrhodopsin-2 (ChR2) under the
Cell Reports 40, 111139, July 26, 2022 3
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Figure 3. Activating M2 axons in STN leads to stopping

(A) An AAV virus expressing ChR2 was unilaterally injected in M2 of wild-type mice (N = 5 mice) and an optic fiber implanted over STN (ipsilateral to the injection

site) to optogenetically target M2 axons in STN. On pseudorandom trials, blue light (473nm) was presented for 500 ms at 20 Hz as soon as the animal crossed

track position 100.

(B) M2 projects directly to STN via the hyperdirect pathway. The image shows the projections (mCherry) and a fiber-optic placement.

(C) Position traces showing laser on and off hit trials aligned to reward time for 1 session in 1 animal. The blue line indicates the position at which the laser is turned

on. To ensure enough running distance to position 100 and have it be a midpoint, the optogenetics sessions were performed at a fixed starting position of 0,

although mice were trained on variable landmark distance.

(D) Plots showing the distribution of the first position the animal stops at after position 100 (N = 5mice). We observe a shift in the distribution, toward position 100,

indicating that during laser on trials, the animal stopped prematurely (Kolmogorov-Smirnov test, ***p = 4.76e�8 < 0.005).

(E) Plot showing the fraction of hits trials with premature stops (stopping first before position 200) (N = 5 mice) during laser on and off trials (permutation test,

***p = 0.0 < 0.005) and for control experiments (N = 3 mice) expressing GFP instead of ChR2 during laser on and off trials.

(F) Plot showing the average speed of the animal (N = 5 mice) in laser on and off trials aligned to the time of crossing position 100, with a significant difference

between laser on and off trials after crossing position 100 (Mann-Whitney U test, **p = 0.0034). The blue-shaded area shows the period in which the laser is

delivered. The peak of velocity at position 100 is an effect from averaging; as speed fluctuates, it is high while the animal is crossing position 100. Averaging will

then yield a high average speed at position 100, and lower average elsewhere where peaks and troughs in speed are averaged.
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Ca2+/calmodulin-dependent protein kinase II (CaMKII) promoter

in M2, and implanted an optic fiber above ipsilateral STN to

target theM2 axons there (Figures 3A and 3B). On a random sub-

set of trials, we delivered a brief burst of blue (473 nm) light (at

20 Hz for 500 ms) into the optic fiber to activate the axons

once the animal crossed the middle of the runway, while running
4 Cell Reports 40, 111139, July 26, 2022
toward the landmark (Figure 3A). We found that activating the

axons led the animal to stop prematurely (Figures 3C–3F). This

suggests that if the brain transmits a signal along the hyperdirect

pathway right before stopping, then it will causally trigger the an-

imal to stop. However, the optogenetic activation was not effec-

tive at inducing premature stopping in all of the trials (Figure 3F),
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Figure 4. Stop activity is seen in STN-projecting M2 neurons at landmark stops but not at mid-stops

(A) Top: An AAV virus was injected in STN of Ai148D mice (N = 4 mice, applicable to A–H) to retrogradely express Cre, and thereby GCaMP6f in M2 neurons

projecting there. Bottom: Plot showing the normalized average calcium activity of labeled M2 neurons within landmark-stop windows aligned to the switching

point.

(B) Graph showing a basis for a 4-dimensional subspace that captures >70% of the energy in the responses, all pooled together.

(C) Graph showing 3 templates of ideal neuronal responses, derived through a change of basis from the templates in (B), that are selectively active in different

epochs in the task: before stops (pre-stop), during stops (stop), and after stops (post-stop). Each neuronal response can then be expressed as a weighted

combination of these 3 templates.

(D) Plot showing neurons (n = 271), whose neural response energy (area under the squared signal) was >80% explained by the subspace, clustered into 3 groups

(pre-stop, stop, and post-stop) using the templates in (B).

(E) Boxplots showing the reliability of neuronal responses during the stop period for each of the 3 clustered populations in (D). High reliability is measured by a low

coefficient of variation. Stop neurons show a significantly higher reliability compared to pre-stop (Mann-Whitney U test, ***p = 6.3e�4 < 0.005) and post-stop

neurons (Mann-Whitney U test, *p = 0.011 < 0.05).

(F) Scatterplot of the coefficient of contribution of the stop template in (C) in spontaneous stops versus landmark stops. Each data point represents a stop neuron

(N = 108) taken from (D), and the coefficient represents the energy of the response along the dimension of the template, obtained by taking the dot product of the

calcium response with the stop template. Landmark stops have a higher coefficient than spontaneous stops, indicating that the stop template has a greater

contribution to responses during landmark stops.

(legend continued on next page)
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likely due to its being unilateral and to the presence of redundant

circuits whose activity alteration may be necessary to initiate

stopping. To verify that this effect was not due to inadvertently

activating fibers beneath STN in the cerebral peduncle (and

not only M2 boutons in STN) because of spurious laser effects

reaching that area, we instead targeted the M2 efferents anterior

to the STN by placing the optic fiber above the cerebral

peduncle. We found that stimulation did not affect locomotion

(Figures S2A–S2C). Furthermore, when we injected an AAV ex-

pressing only GFP (Figures S2D and S2E) and placed an optic fi-

ber above STN, we found no premature stopping during the op-

togenetics control experiment upon laser delivery (Figure S2F).

Stop activity is seen in M2-STN neurons on landmark
stops but not mid-stops
We next asked: Is there activity at the onset of stopping in the

M2-STN pathway? To answer this, we imaged the calcium activ-

ity (GCaMP6f) of M2 neurons projecting to STN using two-

photon microscopy. For each imaged neuron, we retrieved the

activity during the landmark-stop windows (1 s before the

switching point and 1.5 s after), averaged it across these win-

dows, and found a range of responses in different epochs

(Figure 4A).

For a principled clustering, we derived a low dimensional sub-

space, which explained more than 80% of the energy in the neu-

ral population response (Figures 4B, S3A, and S3B). Through a

change of basis, each neuronal response corresponded to a

weighted combination of three basis functions (Figures 4C,

S3A, and S3B), representing ideal pre-stop, stop, and post-

stop neurons, with an additional noise term (STAR Methods).

We used the weights to cluster the neurons into three groups

and recovered a fraction that is active during stops (Figure 4D),

which showed significantly more reliable responses to stopping

compared to the other two groups (Figure 4E). We then collected

activity during spontaneous stops performed by the animal as it

ran toward the landmark. We aligned the activity to switching

points in spontaneous-stop windows (as done for landmark-

stopwindows) and averaged it acrosswindows for stop neurons.

We found that M2 neurons are significantly more active at stops

at the landmark that are visually guided compared to sponta-

neous stops in the middle of the track (paired t test, p =

1.09e�6) (Figures 4F–4H and S4A–S4C), indicating that during

task performance, M2 neurons specifically signal goal-directed

visually guided stops.

Our imaging results revealed a surge of activity at the onset of

the visually guided stop, and our axonal activation results

showed that such a surge can halt locomotion. To assess

whether such an activity surge is necessary, we expressed hal-
(G) Boxplots for the distribution of the coefficients in (F). The orange lines repre

different (paired t test, ***p = 1.09e�6).

(H) Examples of the calcium activity of 6 M2 neurons projecting to STN during stop

stops is normalized to the maximum value of the corresponding response for lan

(I) An AAV virus expressing NpHR3.0 was bilaterally injected in M2 of wild-type

togenetically target M2 axons in STN. On pseudorandom trials, amber light (589 nm

animal crossed position 275, whichever occurred first.

(J) Sagittal section showing M2-STN projections expressing EYFP and NpHR3.0

(K) Plot showing the fraction of miss trials (N = 5 mice) during laser on (inhibiting M

during laser off/on trials for control experiments (N = 3 mice) expressing GFP ins
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orhodopsin fromNatronomonas (NpHR) bilaterally inM2, and im-

planted two optic fibers bilaterally over STN to target the M2

axons there (Figures 4I and 4J). On a random subset of trials,

we delivered continuous amber (589 nm) light to inhibit the axons

when the animal approached the landmark. We found that inac-

tivation increased the number of misses (Figure 4K), while light

delivery in control experiments (Figures 4K, S2D, S2E, S2G,

and S2H) did not. However, the effects of inhibition appeared

weak. Indeed, it can be unclear how effective axonal inhibition

using NpHR is in our setting. In addition, the indirect pathway

of the basal ganglia receives cortical input and promotes stop-

ping via STN; it can also provide redundant information to sup-

plement the signals sent through the corticosubthalamic projec-

tion. Furthermore, mice appear to exhibit a higher miss rate

during laser off trials compared to controls (Figure 4K). It may

be the case that the effect of stimulation disrupts regular basal

ganglia neuronal rhythms and may have repercussion on future

trials;its effect may not be confined to laser on trials leading to

overall more misses.

With the existence of the surge of activity established, the

question we then asked was: How does that surge of activity

drive locomotion to halt?

Behavioral dynamics can be physiologically realized
through feedback control
We next sought a physiological realization of the behavioral

model that connects the physiology and anatomy to the braking

dynamics as depicted by our behavioral model. Wemodeled the

physiological dynamics through a feedback control system,

whereby the neural circuitry tracks a neuronal reference signal

depicting the locomotion plan and ensures a quick reaction in

velocity at the onset of stopping (Figures 5A and 5B).

Our model proposes that the M2-STN projection controls the

MLR, particularly its PPN), through the SNr (Figure 5A) (see

Methods S1C for modeling details and rationale). Our model

also proposes M2 as computing a discrepancy between a loco-

motion plan and the current locomotion state of the animal (Fig-

ure 5B; Methods S1C). At the switching point, derived from the

behavioral model (Figure 2A), the discrepancy is significant,

leading to ‘‘error signals’’ that are sent down along the M2-

STN projections. These error signals had appeared in the form

of stop signals, notably in the imaged responses. Signals of a

possibly similar nature have been reported in frontal cortices,

to report visuomotor mismatch, in the context of predictive cod-

ing (Attinger et al., 2017; Heindorf et al., 2018). Since we defined

the PPN as integrating neuronal input to drive locomotion

(Methods S1C), feeding these error signals directly to PPNwould

correct its response and allow a decrease in velocity. Crucially,
sent the respective medians. The means of the distributions are significantly

s at the landmark and in the middle of the track. The response for spontaneous

dmark stops.

mice (N = 5 mice) and optic fibers were bilaterally implanted over STN to op-

) was presented continuously starting at position 175 for either 1.5 s or until the

.

2-STN axons), during laser off trials (permutation test, *p = 0.045 < 0.05), and

tead of NpHR3.0 (permutation test, ***p = 0.0 < 0.005).
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Figure 5. Behavioral dynamics can be physiologically realized through feedback control

(A) Schematic showing the implicated neural circuit, with green and red indicating excitatory and inhibitory cells, respectively. Activity through the cortico-

subthalamic projection can reach the MLR/PPN either through a direct STN-PPN projection or via an STN-SNr-PPN pathway.

(B) Control theoretic model of corticosubthalamic activity that enables rapid control of locomotion. Each box indicates a transfer function in the Laplace s-domain

and is labeled with the corresponding input-output relation, with x, y, and t denoting input, output, and time. The pathways bifurcating from STN interact to

simulate mathematical differentiation, canceling the slow integrative dynamics of the PPN.

(C) Sagittal slice showing STN Vglut2+ neurons projecting to PPN. An AAVrg-EF1a-DO_DIO-tdTomato_EGFP virus was injected in PPN of Vglut2-Cre animals

(N = 3 mice) to retrogradely express EGFP in Vglut2+ neurons projecting to PPN.
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however, if these error signals were directly fed into PPN as a

control mechanism, then the animal would not be able to stop

quickly enough to collect the reward. Indeed, the behavioral

model has the parameter t, which is required to be small enough

for locomotion halts to be rapid. We propose that the controller

needs to overcome the slowness limitation by performing a

mathematical differentiation operation, thereby canceling out

the slow integrative dynamics of PPN. Anatomically, STN pro-

jects to PPN via two pathways, one inhibitory and one excitatory,

whose precise temporal interaction can simulate differentiation,

yielding the necessary computation to drive rapid dynamics

(Figures 5A and 5B). To fully characterize the controller, we

require three kinds of information—on the input space, the

input-output relation, and the dynamical state of the controller.

The physiological experiments that follow are designed to pro-

vide this information (Figures S5A–S5C).

We purposefully kept the model simple to focus it on a key

point: capturing the speed of stopping through a time constant.

The main prediction of the model is the necessity of a controller

that performs differentiation (essentially a high-pass filter) of the

M2 stop signals; without such a controller, we cannot attain an

adequate time constant. The next experiments are designed to

examine this point.

Fast input-output dynamics are enabled by
mathematical differentiation
To study the input-output relation and the characteristics

required by a controller to achieve rapid locomotion halts, we re-

corded single-unit extracellular activity in M2 and MLR/PPN

simultaneously using silicon probes. We gain the temporal reso-

lution necessary to analyze input-ouput and decay dynamics by

transitioning from 2-photon imaging to extracellular recordings.

While we lose the cell specificity by doing so, we recover it

through additional opto-tagging experiments.

For each recorded unit, we retrieved the spiking activity during

the landmark-stop windows, averaged all of the activity, then

smoothed it to obtain average firing rates (STAR Methods). Sort-

ing the average responses revealed a heterogeneity in the types

of neural responses in both M2 and PPN (Figure 6A), similar to

that observed by calcium imaging of M2 responses (Figure 4A).
We then performed a principled clustering of neuronal responses,

as performed for the imaged responses (Figures 4B and 4C), and

similarly recovered three groups of neurons, revealing a fraction

that are active during stops (Figures 6B and 6C). Both brain struc-

tures are considered to be implicated in the task and admit such

stop neurons; however, the fraction of stop neurons is signifi-

cantly higher in M2 (51/126 in M2 versus 17/141 in PPN; chi-

square test p = 3.5e�14), indicating that these signals are not

equally widespread throughout the brain (Figure 6C). Further-

more, each group of neurons was found to respond more reliably

within its corresponding epoch, when compared to the other

groups (Figure 6D). To verify that the velocity and the correspond-

ing neural activity do not produce time lags or decay at different

rates, we recovered neural activity in PPN that reflects locomotion

speed (STAR Methods) and compared it to the decay in speed.

We observed that the activity is linearly related (up to baseline

offset), thereby incurring no change in decay rates (linear regres-

sion during the second after onset of stopping, R2 = 0.829 p =

5.36e�78) (Figure 6E). This implies that we can study the average

rate of decay in velocity during stopping by studying the average

rate of decay in neural activity during stopping.

The PPN, however, has a number of cell types, with different,

potentially opposing functions (Caggiano et al., 2018; Josset

et al., 2018). Thus, we next investigated the roles of excitatory

and inhibitory cells in the PPN in the context of the task using op-

totagging. We expressed ChR2 in a Cre-dependent manner in

PPN of Vglut2-Cre and Vgat-Cre mice to identify excitatory

and inhibitory cells, respectively. We lowered a recording probe

coupled with an optic fiber and identified the photoresponsive

responsive cells (Figures 6F and 6G). The recordings and clus-

tering (Figure 6F) revealed similar activity and proportions ob-

tained in the initial recordings (Figures 6A and 6C). The record-

ings gathered 36 Vglut2+ units and 26 Vgat+ units (Figure 6I)

and showed responses in both pre-stop and post-stop epochs.

The reliability of the responses between populations was

different: pre-stop Vglut2+ neurons were more reliable in the

pre-stop phase than were the post-stop Vglut2+ neurons in the

post-stop phase (Figure 6H). The reverse was found to be true

for Vgat+ cells. This supports the findings that excitatory cells

promote, whereas inhibitory cells suppress, locomotion. To
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Figure 6. Fast input-output neuronal dynamics are enabled by mathematical differentiation

(A) Top: We recorded extracellular single-unit activity using two 16-channel silicon probes, simultaneously, in M2 and PPN of wild-type mice (N = 4 mice,

applicable to A–E).Center: Coronal sections showing DiI recording probe track in M2 and PPN. Bottom: Plot showing the normalized average firing rate of M2 and

PPN neurons, within landmark-stop windows aligned to the switching point.

(B) Graph showing 3 templates of ideal neuronal responses related to 3 epochs in the task: pre-stop, stop, and post-stop. Each neuronal response can be

expressed as a weighted combination of these 3 templates.

(C) Plots of all of the neurons whose neural response energy (area under the squared signal) was more than 80% explained by the subspace, clustered into

3 groups (pre-stop, stop, and post-stop, from top to bottom) using the templates in (B). The stop-related activity is significantly more prominent in M2 compared

to PPN, comprising 40.5% (51 of 126) of the neurons in M2 versus 12.1% (17 of 141) in PPN (chi-square test, p = 3.5e�14 < 0.005).

(D) Boxplots showing the reliability of neuronal responses during the pre-stop, stop, and post-stop period for M2 and PPN neurons. The reliability of each of the

3 clustered populations in (C) is computed in its corresponding epoch (e.g., the reliability of the pre-stop cluster is computed at the pre-stop epoch) and compared

to that of the remaining neurons. High reliability is measured by a low coefficient of variation. Clustered neurons show increased reliability for their corresponding

epoch (Mann-Whitney U test, ***p < 0.005, **p < 0.01), with stop PPN neurons showing a non-significant difference from the remaining neurons (Mann-Whitney

U test, p = 0.329).

(E) Top: Plot superposing the speed of the animal and the speed-related PPN neural response following the switching point. Bottom: Plot showing the speed-

related PPN neural response plotted against the speed of the animal, following the switching point. The dashed red line is fit through linear regression to the data

during the first second after the switching point (R2 = 0.829 p = 5.36e�78). Activity in PPN is linearly related to the speed of the animal during locomotion halts

(N = 4 mice).

(legend continued on next page)
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further investigate this, we averaged the trial responses and

observed a drastic difference: The response of Vglut2+ cells de-

cayed following the stop, while that of Vgat+ cells increased (Fig-

ure 6K). The general pattern of spiking activity of Vglut2+ cells

follows that observed in the single unit recordings shown in Fig-

ure 6E, and overlaying the plots (after affine transformation to ac-

count for differences in firing rates and baseline activity) showed

that the two are closely matched (Figure 6L). We refer the reader

to Methods S1D for a discussion on how our model fits the cell-

type-specific dynamics.

We can derive from our physiological model (Figure 5A) the

characterization

eðtÞ =
1

m

dy

dt
ðtÞ+ a

m
yðtÞ

The error signal consists of a weighted combination of acceler-

ation and velocity (Methods S1C). However, the theoretical error

signal around the switching point is negative, as r(t) becomes 0,

while y(t) is positive. As neural firing rates are fundamentally

non-negative, the error signals sent from M2 to STN can only

correspond to �e(t), the negative of the error term. This, in turn,

consists of a weighted combination of a negative acceleration

signal �dy/dt and a negative speed signal �y (Methods S1B).

We then reconstructed these signal components in M2 (STAR

Methods) and reconstructed the input-output relation by identi-

fying the coefficient a (=17.08). Using the reconstructed input-

output relation, we derived the predicted PPN response (Fig-

ure 6M). Crucially, we constructed an alternative model by

removing the differentiation component, leaving only an amplifi-

cation gain as a means of control. We found that the animal

cannot decrease its PPN activity in a timely manner (Figure 6M),

suggesting the necessity of a controller performing additional pro-

cessing to speed up the dynamics (root-mean-square error

[RMSE] computed starting from the switching point,

RMSEalternate-response/RMSEpredicted-response = 4.45-fold increase).

STN supports the dynamical state required to drive the
dynamics
We next performed extracellular single-unit recordings in STN to

reconstruct elements of the error signals, the dynamical state,
(F) Top: ChR2 was expressed in a Cre-dependent manner in PPN neurons of Vglut

fiber coupled with a recording probe was lowered above PPN to identify Vglut2+ a

of the neurons recorded during phototagging and their clustering into 3 clusters

(G) Coronal sections showing DiI probe track location and ChR2 expression (mC

(H) Plots showing the 3 clusters of Vglut2+ and Vgat+ identified cells as clustere

(I) Plot showing the fraction of unidentified, Vglut2+, and Vgat+ cells among all re

(J) Boxplots showing the reliability of neuronal responses for pre- and post-stop

show higher reliability in pre-stop neurons (Mann-Whitney U test, n.s. p = 0.325)

U test, n.s. p = 0.129).

(K) Plot showing the average responses of Vglut2+ and Vgat+ neurons, w

***p = 1.6e�37 < 0.005).

(L) Plot showing the normalized speed-related PPN neural response of Vglut2+ c

animal, following the switching point. The linear relation observed in (E) extends

(M) Left: Plot showing the reconstructedM2 error signal (input), the PPN response

relation (predicted output) starting from 1 s before the stopping onset. The plot also

from the model, where we find that activity cannot decay quickly enough (RMSE c

fold increase). Right: Plot showing the same analysis, but performed starting at th

forcing speed decay to initiate only at the onset of stopping (RMSEalternate/RMSE
and the differentiation operation (Figures 7A and 7B) (see

Methods S1C and S1E for more information). We studied the

dynamical state of the controller by linearly decomposing it

into two components, as done for the error signal—one compo-

nent used to differentiate the negative acceleration component

and another component used to differentiate the negative speed

component (Methods S1C). We first restricted the neuronal pop-

ulation to the neurons in STN, whose firing activity peaked be-

tween 250 ms before and 250 ms after the switching point

(STAR Methods) (Figure 7C). We considered 250 ms after the

switching point as PPN speed activity had reached its minimum

at approximately that point (Figure 6D), and we considered

250 ms before the switching point for symmetry and to capture

peaks that occur immediately before braking. We found two di-

mensions in a low-dimensional neural activity space in which the

first encodes the negative acceleration and the other encodes its

corresponding dynamical state. Crucially, the difference of the

activity along these dimensions yields the needed differentiated

signal of negative acceleration (Figures 7D and 7E). We repeated

the same procedure for the population of neurons in STN, whose

firing activity transitioned from low to high after 250 ms (Fig-

ure 7F) (STAR Methods), the waiting phase as determined by

PPN activity (Figure 6D), and again were able to reconstruct

two dimensions that yield the differentiated signal of the negative

speed component (Figures 7G and 7H). Combining the sub-

spaces for these two populations indicates that the activity in

STN can support differentiation. We further find that this activity

is characteristic of STN, and is not present in M2 (Figures S6A–

S6H) (see Methods S1E for more details).

To verify that these stopping dynamics are indeed related to

STN neurons, we photo-identified STN cells by expressing

ChR2 in the STN of Vglut2-Cre mice and delivering light while

recording (Figures 7I and 7J). Our recordings have identified 20

Vglut2+ cells in 2 mice (Figure 7K), whose activity mostly sup-

ports negative acceleration, corresponding to the stop signal

(Figures 7L and 7M). This justified studying the unidentified cells

in the stopping regime.

Our experiments suggest a role for the STN-PPN projections in

interacting with STN-SNr-PPN pathway to accelerate the signals.

To test this, we bilaterally injected in the PPNof Vglut2-Cremice a
2-Cre and Vgat-Cre mice (N = 3mice for each line, applicable to F–M). An optic

nd Vgat+ PPN cells expressing ChR2while recording. Bottom: Plots showing all

as in (C).

herry) in Vglut2+ and Vgat+ PPN cells.

d in (C).

corded cells, before applying the clustering in (F) and (H).

neurons during the pre- and post-stop epochs, respectively. Vglut2+ neurons

, while Vgat+ cells show higher reliability in post-stop neurons (Mann-Whitney

ith a significant difference in the pre-stop epoch (Mann-Whitney U test,

ells (green) and the cells recorded in (A) (blue) plotted against the speed of the

to Vglut2+ neurons.

(output), and the predicted PPN response using the reconstructed input-output

shows an alternative prediction obtained by removing the STN-PPNprojection

omputed starting from the switching point, RMSEalternate/RMSEpredicted = 4.45-

e onset of stopping, by forcing the error signal to be zero before time 0, thereby

predicted = 6.63-fold increase).
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Figure 7. STN supports the dynamical state required to drive the dynamics

(A) Top: We recorded extracellular single-unit activity in the STN of wild-type mice (N = 4 mice, applicable to A–H) using Neuropixels probes. Center: Sagittal

section showing the Neuropixels probe placement track (DiI) after recording. Bottom: Equations that dictate the evolution of the dynamical state q, and its

interaction with the error signal e to produce a differentiated input y to PPN. The scaling factors a and m represent the time constant and gain in the control

diagram of Figure 5B.

(B) Plot of the normalized firing rate of STN neurons, within landmark stop windows aligned to the switching point.

(C) Plot showing neurons whose activity peaks between 250 ms and after 250 ms of the stop onset. The neurons are ordered by peak timing.

(D) Within the population of (C), we recreated 2 low-dimensional signals representing the negative acceleration component of the error signal (early signal) and its

dynamical state counterpart (late signal). The difference of these 2 produced a differentiated signal, matching the theoretical prediction.

(E) Bar graph showing the variance of the theoretical differentiated signal in (D) explained by the difference between the early and late signals (green) versus that

explained by the early signal as if no computation was performed (blue).

(F) Plot showing neurons whose activity transitions from low to high between 250 ms before the stop onset and 750 ms after.

(legend continued on next page)
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retroAAV that expresses the inhibitory opsin Jaws in aCre-depen-

dent manner (Figure 7N). This causes Jaws to be expressed in

STN somas projecting to PPN, among other populations. We

then bilaterally implanted optic fibers above STN to target these

projection neurons (Figure 7O). In a random subset of trials, we

delivered amber light when the animal was approaching the land-

mark and found that inhibiting these projections led to an increase

in miss rate (Figure 7P) as compared to the control group in Fig-

ure 4K. This projection is excitatory, and is known to project to

excitatory cells in PPN. This is the counterintuitive role in acceler-

ating stopping (rather than promoting locomotion) via its interac-

tion with the STN-SNr-PPN pathway. Regardless, further investi-

gationwould be needed to understand the variability in the results

of Figure 7P, using a larger number of animals, as well as a more

detailed examination of the PPN-projecting STN population—its

density, its projection collaterals, and its target location in PPN.

Overall, our results suggest that the STN-PPN and STN-SNr-

PPN pathways convey different signals (see, for example,

Figures 7D and 7G) whose convergence onto PPN can result in

differentiating the M2 error signal. A recent study (Parolari

et al., 2021) found STN cells that project either to SNr or to ento-

peduncular nucleus, but not both. It may similarly be the case

that there are two subpopulations of STN cells—one that directly

projects to PPN, but not SNr, and another that projects to SNr,

but not PPN. Such segregated projection-specific populations

may underlie the observed variability in neuronal STN responses

and may be the anatomical substrate ensuring that the appro-

priate locomotion-promoting and -suppressing signals are

conveyed to achieve rapid control of locomotion.

DISCUSSION

We have used a simple visually guided locomotion task to derive

an important principle of movement control that uses a specific

pathway, from M2 to STN, and circuit, from STN to MLR/PPN.

Our results demonstrate that a signal is sent down along M2-

STN projections to rapidly halt locomotion. Importantly, these

signals are visually guided and do not occur during spontaneous

locomotion halts. Our results further suggest that the M2-STN-

PPN pathway ensures this fast response by differentiating the

signal, to compensate for integration dynamics in PPN. In partic-
(G) Within this population of (F), we recreated 2 low-dimensional signals repres

dynamical state counterpart (late signal). The difference of these 2 produced a d

(H) Bar graph showing the variance of the theoretical differentiated signal in (G) ex

explained by the early signal as if no computation was performed (blue).

(I) ChR2 was expressed in a Cre-dependent manner in STN neurons of Vglut2-C

probe was lowered above STN to identify STN cells expressing ChR2 while reco

(J) Sagittal section showing the DiI probe track location and ChR2 expression (m

(K) Plot showing the fraction of Vglut2+ identified cells among recorded cells.

(L) Plots showing neuronal responses clustered as in (C) and (F) for the recorded

(M) Boxplots showing the reliability of neuronal responses during the stop period

for STN cells supporting negative speed. Vglut2+ cells show a reliability similar t

0.236), which show a significant difference in reliability compared to the remain

U test, ***p = 5.4e�7 < 0.005).

(N) A retroAAV expressing Jaws in a Cre-dependent manner was bilaterally inje

implanted over STN to target the Vglut2+ STN neurons projecting to PPN. On pse

position 175 for either 1.5 s or until the animal crosses position 275, whichever o

(O) Sagittal section showing STN neurons projecting to PPN and retrogradely ex

(P) Plot showing the fraction of miss trials (N = 3 mice) during laser on and off tri
ular, STN activity can reach PPN through SNr, but also through

direct STN-PPN projections; the temporal interaction of these

two pathways simulates differentiation. Our analysis began by

capturing the behavior of the animal through a minimum-time

optimal-control problem. This approach captured the rate of

stopping through a time constant, and made the notion of

switching point central to the analysis. This approach then

enabled us to cast the goal of the neural signaling as ensuring

a small enough time constant to achieve rapid locomotion halts.

We formalized the neural signaling through a feedback control

system, and, through a set of experiments, characterized the

properties governing the input space, the input-output relation,

and the dynamical state of the controller.

Populations of neurons in the brainstem, notably in the me-

dulla, have been found to stop ongoing locomotion (Bouvier

et al., 2015; Capelli et al., 2017; Grätsch et al., 2019; Juvin

et al., 2016). We expect such reticulospinal cells to be recruited

in the context of our task. We do not think that the corticosub-

thalamic signaling through MLR is bypassing these lower brain-

stem circuits, and this warrants detailed future investigations.

However, the nature of the locomotion signaling is different.

These reticulospinal cells impinge directly onto spinal circuits

and offer a low-level direct control of locomotion. The cortico-

subthalamic signaling necessitates further processing to reach

locomotor circuits, and the processing should be designed so

that it ensures fast locomotion halts. From an engineering

perspective, feedback control can be leveraged to steer the

trajectory of a system as needed and ensure desired operation,

which in our case consists of additionally ensuring fast re-

sponses. This principle is often realized by computing an error

signal—reflecting the discrepancy between a reference trajec-

tory and the current trajectory of the system—and using it to

oppose the deviation of the system from a desired operation

(Aström and Murray, 2010). Our behavioral model implicates

a locomotion plan as a reference signal, from which such error

signals can be derived. Error signals have been reported widely

in the brain. They provide, for instance, a basis for the dopami-

nergic reward system (Schultz, 1998) and have been instru-

mental in the control of movement (McNamee and Wolpert,

2019; Shenoy et al., 2013; Wolpert and Ghahramani, 2000),

setting a basis for optimal feedback control in motor
enting the negative speed component of the error signal (early signal) and its

ifferentiated signal, matching the theoretical prediction.

plained by the difference between the early and late signals (green) versus that

re mice (N = 2 mice, applicable to I–L). An optic fiber coupled with a recording

rding.

Cherry) in Vglut2+ cells in STN.

cells.

for STN cells supporting negative acceleration and during the post-stop period

o the unidentified cells during the stop period (Mann-Whitney U test, n.s. p =

ing recorded STN cells, not supporting negative acceleration (Mann-Whitney

cted in PPN of Vglut2-cre mice (N = 3 mice), and optic fibers were bilaterally

udorandom trials, amber light (589 nm) was presented continuously starting at

ccurs first.

pressing GFP and Jaws.

als (permutation test, ***p = 0.004 < 0.005).
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coordination (Todorov, 2004; Todorov and Jordan, 2002). Error

signals necessitate reference trajectories, and such references

are often derived from predictive capabilities of brain function.

These capabilities have often been formalized through internal

models (Huang et al., 2018; McNamee and Wolpert, 2019)

and predictive processing (Keller and Mrsic-Flogel, 2018).

Indeed, error signals have been especially reported following

expectation perturbations, notably visuomotor mismatch (At-

tinger et al., 2017; Heindorf et al., 2018; Marple-Horvat et al.,

1993), as signaling prediction errors. The signals we elucidate

could also be of a similar nature. The mechanisms by which

they arise are the subject of further research.

Stopping in such a task is typically considered to recruit proac-

tive inhibitionasopposed to reactive inhibition. Theanimal cansee

the landmark as it approaches and can prepare to stop. The situ-

ation then lends itself to a potential locomotor plan that is imple-

mented without being interrupted. The role of the hyperdirect

pathway has been extensively studied in reactive settings (Aron

et al., 2003; Eagle et al., 2008; Nachev et al., 2007, 2008). In

stop-signal reaction tasks or go/no-go tasks, participants are

signaled to immediately halt an ongoing (or to be initiated) action.

Proactive inhibition is considered to be heavilymediated by the in-

direct pathway, but there is certainly evidence of the hyperdirect

pathway, and more generally the same ‘‘stopping network,’’ as

equally being involved (Aron, 2011; Meyer and Bucci, 2016). Our

work also highlights a role for the hyperdirect pathway as a critical

route for rapid cortical modulation of brainstem structures, com-

plementing the classical role of the direct and indirect pathway

and offering a view consistent with how the hyperdirect pathway

is considered to interact with them (Schmidt et al., 2013). We

believe that the hyperdirect pathway does indeed have a general

role in interrupting action (Aron et al., 2016; Fife et al., 2017; Li

et al., 2020). However, aspects of that role need not come through

the pathway to MLR, but perhaps through pathways to the supe-

rior colliculus (SC) or thalamus through SNr. One can hypothesize

that the role of the corticosubthalamicpathway towardSCmaybe

in rapidly interrupting orienting behavior. The role of the hyperdir-

ect pathway may well extend beyond motor processes, to asso-

ciative and cognitive processes. Evidence of this generality is

emerging (Heston et al., 2020; Hannah and Aron, 2021), and this

role is still a subject of further research.

In addition to the indirect pathway in the basal ganglia, alterna-

tive routes for signaling locomotion halts may include a visual

tectal pathway, consisting of direct projections from the SC to

the MLRs (Roseberry et al., 2016). We expect such a signal to be

more engaged upon sudden flashes of the landmark, likely in a

more reactive setting, perhaps engaging circuits typically used

for startle responses (Liang et al., 2015). In addition, glycinergic

neurons in thepontine reticular formation (PRF) project to the intra-

laminar thalamic nuclei (IL), and stimulation of their axons in IL pro-

duces behavioral arrest (Giber et al., 2015).M2 directly projects to

PRF, and the projections may directly drive such glycinergic cells

to achieve fast locomotion halts. Aside from these pathways,

various other pathways can induce behavioral arrest (Klemm,

2001;RoseberryandKreitzer, 2017). These are generally recruited

via different mechanisms, although some can overlap with ours.

Further task enhancements are needed to elucidate their

contributions.
12 Cell Reports 40, 111139, July 26, 2022
Limitations of the study
There are a number of limitations to the data and their interpreta-

tion that, if addressed, can further elucidate the underlying

mechanisms. While calcium imaging provided us with projec-

tion-specific activity, the calcium signal dynamics are slow,

and extracellular recordings while phototagging M2 cells projec-

ting to STN may instead give us a temporally rich signal to better

discern the dynamics of stopping. It is also unclear how strong

the effects are of optogenetic activation or inhibition of axons

on STN activity. Extracellular recordings during axonal stimula-

tion may provide key information to understand the extent of

the effect and its implications for behavior. We found that M2-

STN inhibition yielded relatively weak behavioral effects, and

such an experiment can help dissect the reasons. Finally, a

main prediction of the work is that the STN-PPN and STN-SNr-

PPN admit differential roles in ensuring rapid locomotion stops.

Recording from STN projections to SNr and PPN through photo-

tagging may elucidate the exact signatures sent along these two

pathways.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved by the Massachusetts Institute of Technology’s Animal Care and Use Committee and conformed to

the National Institutes of Health guidelines. Adult mice (>2 months old) on a C57BL/6J background were used in this study. Male or

female mice were randomly selected for each experiment. We also used the Ai148D (Ai148(TIT2L-GC6f-ICL-tTA2)-D, Jackson Lab-

oratory) mouse line for the two-photon imaging experiments, the VGlut2-Cre (VGlut2-ires-cre knock-in, Jackson Laboratory) mouse

line for the optogenetics, optotagging experiments and tracing experiments and the vgat-Cre (VGlut2-ires-cre knock-in, Jackson

Laboratory) mouse line for the optotagging experiments.
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METHOD DETAILS

Surgery
Surgical procedures were performed under isoflurane anesthesia whilemaintaining body temperature at 37.5�Cusing an animal tem-

perature controller (ATC2000, World Precision Instruments). After deep anesthesia was confirmed, mice were placed in a stereotaxic

frame (51725D, Stoelting), scalp hairs were removedwith hair-remover cream, the underlying skin was cleaned with 70% alcohol and

betadine, and an incision wasmade in the scalp. The conjunctive tissue was removed by rubbing hydrogen peroxide on the skull. The

skull was positioned such that the lambda and bregma marks were aligned on the anteroposterior and dorsoventral axes. The skull

was further leveled along the mediolateral axis. Animals were given analgesia (slow release Buprenex, 0.1mg/kg and Meloxicam

0.1mg/kg) before and after surgery and their recovery was monitored daily for 72 h.

For viral injections, a 200-mm diameter hole was drilled through the skull at the location of interest. Viruses were delivered

with a thin glass pipette at a rate of 75 nL/min (unless indicated otherwise) by an infuser system (QSI 53311, Stoelting). The

following viruses (titer: �10e-12 virus genomes per ml) were injected in the performed experiments: AAV5-CamKII-ChR2-

mCherry (pAAV-CamKIIa-hChR2-(H134R)-mCherry-WPRE-pA, UNC Vector Core) for optogenetics activation of M2 axons in

STN, AAVrg-EF1a-Cre-mCherry (pAAV-Ef1a-mCherry-IRES-Cre, Addgene) for 2P imaging of M2 neurons projecting to STN,

AAV5-CaMKII-NpHR3.0 + EYFP (pAAV-CaMKIIa-eNpHR 3.0-EYFP, Addgene) for optogenetics inhibition of M2 axons in STN,

AAVrg-CAG-Jaws + GFP-FLEX (pAAV-CAG-FLEX-rc [Jaws-KGC-GFP-ER2], Addgene) for optogenetics inhibition of STN somas

projecting to PPN, AAV1-EF1a-ChR2+EYFP-DIO (AAV-EF1a-double floxed-hChR2(H134R)-EYFP-WPRE-HGHpA) for optotag-

ging in PPN, AAV1-EF1a-ChR2+mCherry-DIO (pAAV-EF1a-double floxed-hChR2(H134R)-mCherry-WPRE-HGHpA) for optotag-

ging in STN, AAVrg-EF1a-DO_DIO-tdTomato_EGFP (pAAV-Ef1a-DO_DIO-TdTomato_EGFP-WPRE-pA, Addgene) for anatomical

tracing of STN projections to PPN, AAV5-CAG-GFP (pAAV-CAG-GFP, Addgene) for optogenetics control experiments.

For the optogenetic activation experiments, wild-type mice were unilaterally (left hemisphere) injected with 400nL of AAV5-

CaMKII-ChR2-mCherry in M2 (centered at AP: +1mm, ML: +0.5mm, DV: +0.5mm). After injection, the skin was sutured and we let

mice recover for 4–6 weeks for optimal opsin expression. In a second surgical procedure, a fiber-optic cannula (Thorlabs) with

200um diameter (0.39NA) was implanted above STN (AP: �1.9mm, ML: +1.5mm, DV: +4.3mm). The optic fiber cannula was held

by a stereotaxic manipulator, inserted and attached to the skull with dental cement (C&BMetabond, Parkell). To avoid light reflection

and absorption, dental cement was mixed with black ink pigment (Black Iron Oxide 18727, Schmincke). A custom-designed head-

plate (eMachineShop) was implanted at the end of the surgery for head fixation. For the optogenetics experiment inhibiting the M2

axons in STN, wild-type mice were bilaterally injected with 400nL of AAV5-CaMKII-NpHR3.0-EYFP in M2, and a dual optic fiber can-

nula (Doric lens) was implanted with the two 200um diameter (0.39NA) fibers bilaterally lowered above STN (AP: �1.9mm,

ML: +1.5mm, DV: +4.3mm). For the optogenetic experiment inhibiting the STN projections to PPN, VGlut2+ mice were bilaterally in-

jected with 300nL of AAVrg-CAG-Jaws + GFP-FLEX in PPN (AP: �4.7mm, ML: +1.25mm, depth: +3.15mm from pial surface), and a

dual optic fiber cannula (Doric lens) was implanted with the two 200um diameter (0.39NA) fibers bilaterally lowered above STN (AP:

�1.9mm, ML: +1.5mm, DV: +4.3mm).

For the retrograde tracing of STN projections to PPN, VGlut2+ mice were bilaterally injected with 300nL of AAVrg-EF1a-DO_DIO-

tdTomato_EGFP in PPN (AP: �4.7mm, ML: +1.25mm, depth: +3.15mm from pial surface). After injection, the skin was sutured and

we let mice recover for 4 weeks for optimal opsin expression, before harvesting the brain for histology.

For imaging experiments, Ai148Dmicewere bilaterally injectedwith 200–300nL of AAVrg-EF1a-Cre-mCherry in STN (AP:�1.9mm,

ML: +1.5mm, DV: +4.6mm) and a cranial window centered was implanted above M2 in both hemispheres. The virus was delivered at

a slower rate of 50nL/min slowly to limit the spread asmuch as possible, to avoid contaminating adjascent brain regions. The location

of STN also limits contamination: it is encapsulated by the cerebral peduncle from the anterior side, the ventral side, lateral side and

half of the posterior side. We drilled a 3-mm circular window centered over the midline (AP: 1mm) to exposeM2 on each hemisphere.

We stacked two 3-mm coverslips centered on a 5-mm coverslip (CS-5R and CS-3R, Warner Instruments) and glued the three

together with UV adhesive (NOA 61 UV adhesive, Norland Products). The fabricated window was positioned over the craniotomy

and attached to the skull using dental cement (C&B Metabond, Parkell). The dental cement was mixed with black ink pigment (Black

Iron Oxide 18727, Schmincke) to block light leakage during imaging. We then attached a custom-designed headplate to the skull for

head fixation.

Extracellular single-unit recordings were performed acutely in head-fixed behaving mice. We attached a custom-designed head-

plate to the skull for head fixation, using a custom-designed stereotaxic arm to align the head plate parallel to the median and dorsal

line of the skull during implantation. The head plate was attached to the skull using dental cement. The exposed skull was protected

using rapid-curing silicone elastomer (Kwik-Cast, WPI) topped with a fine layer of dental cement. One to two days before recordings,

mice were anesthetized with isoflurane and the dental cement and silicone elastomer on the skull were removed. The mouse was

placed on the stereotaxic frame and 200-mm diameter craniotomies were performed on top of the recording sites of interest, M2

and PPN, centered around the coordinates of interest. The craniotomy was protected with saline and a piece of Gelfoam (Pfizer).

The skull was covered again with silicone and the animal was allowed to recover for at least a day. Viral injection were additionally

performed before headplate attachment for optotagging experiments: 300nL of AAV1-EF1a-ChR2+EYFP-DIO were bilaterally
Cell Reports 40, 111139, July 26, 2022 e2
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injected in PPN of vlgut2-cre and vgat-cre mice (AP: �4.7mm, ML: +1.25mm, depth: +3.15mm from pial surface) for optotagging in

PPN and 400nL of AAV1-EF1a-ChR2+EYFP-DIO were bilaterally injected in STN of VGlut2+ mice for optotagging in STN (AP:

�1.9mm, ML: +1.5mm, DV: +4.7mm).

Behavioral task, equipment and training
Mice were head-fixed using optical hardware (Thorlabs) and positioned on a custom-fabricated rubber treadmill (LEGO Technic +

M-D Building Products) coupled with a rotary encoder (Signswise). The virtual runway was constructed using two parallel rails (Thor-

labs) each equipped with high-density LED PCB bars (DotStar, Adafruit). Reward consisted of 5–10ul of water and was delivered

through a lick spout using a solenoid valve (Parker). Licks were collected, when needed, using a capacitive touch sensor (Adafruit).

The behavioral apparatus was controlled through custom-written code deployed on a microcontroller (Arduino). The microcontroller

interfaced, through serial connection, with custom-written scripts (Python) running on a custom-designed multi-purpose computer

(operating under GNU/Linux) to execute the task.

The landmark consisted of a contiguous set of LEDs that were lit blue on both rails. The length of the landmark amounted to 6cm,

and the position of the animal in track units (t.u.) was referenced to the mouse’s nose. Specifically, the landmark interval 200–300

corresponded to the mouse’s nose being within the lit LED range. Track units (t.u.) were calibrated to have 200t.u. correspond to

12cm. The rotation of the treadmill was coupled to the movement of the landmark so that the linear velocity of the outer-edge of

the treadmill equaled the linear velocity of the landmark.

Mice underwent water-regulation and obtainedwater reward (5mL) during behavior. They were then habituated to the treadmill, and

underwent a shaping procedure that rewards a stop after crossing a certain distance. The landmark was then introduced and the

required waiting time to collect reward was gradually increased across days from 0.6s to 1.5s until they reached their full perfor-

mance. Experiments began once the number of successful stops at the landmark was consistently above 100 within a 30 min

session.

The behavioral experiment (Figure S1J) assessing the effect of landmark distance was performed by alternating between sessions

having the landmark centered at position 250 (near) and sessions having the landmark centered at position 450 (far).

Behavioral model
From each behavioral session, we defined landmark-stop windows (rewarded stops between positions 200–300). Each time window

corresponds to 2.5s, aligned to a switching point. The switching point was defined as the last major velocity peak (value higher than

25% of themaximum velocity within 200mswindow before sustained zero velocity). The time window then consisted of 1s before the

switching point, and 1.5s after. We chose this width to capture most of the 1.5s waiting period of the animal, and have the period

where speed is decaying to a halt centered, thereby requiring the switching point to be around 1s after the start of the window. Align-

ing to a switching point, instead of reward-time, allowed us to consider and analyze spontaneous stops that are non-rewarded. We

pooled together all landmarks-stop windows, across sessions and animals, and averaged them to get the average traces, presented

in (Figure 2C). We then fixed umin = 0 to approximate the problem, and then derived t and umax from the peak velocity of the animal

before stopping and the slope of the logarithm of the velocity trace during decay.

Optogenetic manipulations
Blue light (473nm) or amber light (589nm) was delivered using a diode-pumped solid-state laser (Optoengine for 473nm, Laserglow

Technologies for 589nm). Laser stimulation was triggered using a custom-designed source-follower circuit driven by a microcontrol-

ler (Arduino) dictating the stimulation pattern. A fiber-optic patch cable with a ferrule end (200um, 0.39NA) was coupled to the

implanted fiber optic cannula with a ferrule mating sleeve (Thorlabs). A piece of black electrical tape was wrapped around the

connection between the patch cable and the implanted ferrule, to block any light emitted from that interface.

Photo-stimulation was randomly applied on 30% of the trials. We further imposed a condition that no two consecutive trials could

be selected for laser stimulation. For the optogenetics activation experiments, on a trial selected for photo-stimulation, blue light was

delivered once the animal reached position 100, for 500ms at 20Hz, 20% duty-cycle (PW:10ms, and T:50ms) with a peak power of

10–15mw (average power of 2–2.5mw). For the optogenetics inhibition experiments, on a trial selected for photo-stimulation, amber

light was delivered once the animal reached position 175 continuously for either 1.5 s or till the animal crosses position 275, which-

ever time period is shorter. Each animal underwent three 30min behavioral sessions of photo-stimulation. We kept the session where

the behavioral performance was deemed adequate (>50 hits).

Calcium imaging and neuronal response analysis
Two-photon calcium imaging was performed through a cranial window. GCaMP6f fluorescence was imaged through a 25x/1.05NA

objective (Olympus) using a custom-configured two-photonmicroscope (MOM, Sutter Systems). Excitation light at 910nmwas deliv-

ered with a Ti:Sapphire laser (Mai-Tai eHP, Spectra-Physics) equipped with dispersion compensation (DeepSee, Spectra-Physics).

Emitted light was bandpass filtered and collected with a GaAsP photomultiplier tube (Hamamatsu). STN-projecting neurons in M2

were imaged between 400 and 500um below the surface at 10Hz using galvo scanning, and images were acquired by

ScanImage (Vidrio) to generate a TIFF stack. Power at the objective ranged from 15 to 30 mW, depending on GCaMP6f expression

level and depth.
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Neuronal ROI selection and calcium signal extraction was performed using CaImAn (Flatiron Institute) (Giovannucci et al., 2019)

implementing a constrained nonnegative matrix factorization approach (Pnevmatikakis et al., 2016). The obtained ROIs and signals

were additionally hand-curated to leave out any false-positives.

The animals performed 30min behavioral sessions, and fluorescence was acquired for 1600s (�26.6 min) during that period. The

behavioral data included a reference signal derived from the microscope acquisition trigger signal, and that signal was used to align

to the behavioral signals to the neural signals. The neural signals were then upsampled using piecewise-constant interpolation to

match the temporal resolution of 200Hz of the behavior.

Data analysis: From each behavioral session we defined landmark-stop windows (rewarded, stops between positions 200–300)

and spontaneous-stop windows (non-rewarded, stops before position 150). Each time window corresponds to 2.5s, aligned to a

switching point. The switching point was defined as the last major velocity peak (above 25% of the maximum velocity within

200ms window before sustained zero velocity). The time window then consisted of 1s before the switching point, and 1.5s after.

For each neuron, we computed the average DFF response over a landmark-stop window, normalized each to amaximumDFF of 1,

and formed an N-by-T (N: number of neurons and T: time) matrixMwhere each row corresponded to the normalized average DFF of a

neuron. To capture most of the energy in the responses in a low-dimensional space, we reduced neuronal dimensions by performing

a low-rank approximation (rank = 4). Specifically, we performed a singular value decomposition of M asM =USVT where the matrix S

is a rectangular diagonal matrix of singular values, and the matrices U and V are orthonormal matrices (Dahleh et al., 2004; Horn and

Johnson, 2012; Strang, 2016), and kept only the highest 4 singular values in S, and set the remaining ones to zero, to get a matrix

Sapprox. We reasoned that we had (not necessarily independent) four-degrees of freedom in our analysis: baseline, pre-stop, stop

and post-stop activity, and thus sought to begin with a 4-dimensional space. Each of the four non-zero singular values in S corre-

sponded to a temporal neuronal response in VT, which together span a 4-dimensional subspace. The subspace contained more

than 80% of the calcium signal energy for the whole population (squared Frobenius norm of M). Specifically, the sum of squares

of all the entries (energy) in M - Mapprox is less than 20% of the sum of squares of all the entries (energy) in M, indicating that the

low-dimensional subspace indeed captured 80% of the energy in the neuronal responses (Horn and Johnson, 2012; Strang,

2016). Adding more dimensions will only facilitate capturing more of the dynamics by capturing more energy. We aimed to capture

the bulk features of the signal, avoiding less prominent features, more fit to be considered noise in these populations, by keeping the

number of dimensions to a minimum.

The four temporal neuronal responses obtained in VT corresponding to the non-zero singular values in Sapprox span a 4-dimensional

space, and form a basis to that space. Each DFF response can then be written as a weighted combination of these four basis re-

sponses and an additional response outside (orthogonal) to that space that is considered as noise. As a space can admit multiple

bases, we decided to find a basis that represents stopping epochs and decompose our neuronal responses onto it. We sought to

define ideal neuronal templates of pre-stop, stop and post-stop neurons (Figure S3A). We began with three signals equal to 1 for

t < 0 while 0 otherwise, equal to the average velocity of the animal for t > 0 while 0 otherwise, and equal to 1 for t > 0.5s while 0 other-

wise. We projected each of the three square signals to the 4-dimensional subspace defined by the low-rank approximation, and

ensured orthogonality using the gram-schmidt orthonormalization process (Strang, 2016). We were left with three templates of ideal

pre-stop, stop and post-stop neurons, spanning a three-dimensional subspace. We then kept the imaged neurons for which at least

85% of their calcium signal energy (area of the squared signal) came from the three-dimensional subspace, and discarded the rest

from the analysis. This kept about 64% of all neurons we started with, and we performed clustering on them as described below.

Each neuronal response can bewritten as aweighted combination of the three templates, plus some additional component orthog-

onal to the subspace (noise). We recovered the weights for each response by taking the inner-product (dot-product) with each tem-

plate.Wemultiplied theweight by themaximum value in the template to account for the template width, to get a correctedweight. We

then attributed a neuron to one of three classes (pre-stop, stop and post-stop) whose corresponding corrected-weight is highest.

Most importantly, the calcium responses in each class were not reduced in dimensions; they were the original averages of the raw

DFF traces taken over landmark stop windows. The dimensionality reduction was only used to cluster the neuronal responses.

For the class of stop-neurons, we computed the weight with respect to the stop-neuron template for the average response in land-

mark-stop windows and spontaneous-stop windows, by taking the inner-product (dot-product) with the stop-neuron template.

For a fixed epoch and neuron, the activity of a trial was averaged over the epoch and normalized by the average over the whole

stopping timewindow (between -1s and 1.5s, with 0 indicating the switching point). The reliability of a response was the computed as

the coefficient of variation (mean/standard deviation). The epochs consideredwere: pre-stop (-1s–0s), stop (�0.25s–0.25s) and post-

stop (0.5s–1.5s).

Extracellular recordings in M2 and PPN and neural response analysis
On the day of the recording, the animal was head-fixed on the behavioral setup and the silicone andGelfoam removed gently. A 0.9%

NaCl solutionwas used to keep the surface of the brain wet for the duration of the recordings.We submerged a reference silver wire in

the NaCl solution on the skull surface. The 16-channel silicon probes (A1x16-Poly2-5mm-50s-177-A16, Neuronexus) were then low-

ered in the ventral axis with motorized manipulators (MP-285, Sutter Instrument Company andMicropositioner Model 660, Kopf) at a

rate of 20microns per second. The probe recording inM2was lowered to (AP: +1mm,ML: +0.5mm, depth: +0.5mm from pial surface)
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and the probe recording in PPNwas lowered to (AP:�4.7mm,ML: +1.25mm, depth: +3.15mm from pial surface). The recording sites

on the probe span about 0.375mm. As such, the probe tip was lowered deeper than the indicated depth, to ensure the sites cover the

area surrounding the indicated depth.

The extracellular signal was acquired through a custom-configured Plexon MAP system, initially amplified using a 13 gain head-

stage (model E2a, Plexon) connected to a 1003 preamp (PBX-247, Plexon). The signal was high-pass filtered at 300 Hz. Spikes were

monitored online with amplitude threshold using Plexon Sort Client software, and raw continuous data was recorded at a rate of

40kHz. Spike sortingwas then performed on the rawwaveform using a fully-automated spike-sorting algorithm throughMountainsort

(Chung et al., 2017). Spike curation was done manually to remove artifacts picked by the algorithms (ill-shaped spikes) and spikes

with low amplitudes or low spontaneous spike rate (<0.1 spikes s�1). We verified spike times with cross-correlograms to eliminate

duplicates.

For verifying the probe location after recordings, the silicone probes were gently retracted and the recording tract was marked by

re-entering the DiI-coated probe (2 mg/mL; D3911, ThermoFisher) at the same location. The brain was harvested post-experiment

and the probe location was confirmed through histology.

Data analysis: The animals performed 30min behavioral sessions, and recordings were initiated before the start of a session and

lasted after the end of a session. Both the behavioral and physiology apparatus were continuously recording an external reference

signal (acquisition at 200Hz in behavioral data and 40kHz in physiology data). This signal was used to align the physiology and behav-

ioral data.

We down-sampled the resolution of the physiology data by binning the spikes into 5ms intervals to match the resolution of the

behavioral data, and computed mean average responses as performed for the calcium imaging. The data was smoothed with a

Gaussian filter with standard deviation around 7ms (corresponding to a variance of 50ms2), and we then performed dimensionality

reduction through low-rank approximation (with k = 4), exactly as performed for the calcium imaging data.

To study the relation between PPN activity and speed, we considered all the PPN neurons whose average activity transitions from

high to lowwithin a 1s window, 750ms before the switching point and 250ms after. Specifically, for each time point, we computed the

mean h of the activity prior to it and the mean l of the activity after it, and found the time point that maximizes h-l. We kept the neurons

whose optimal time point falls within the corresponding window. We went through all the kept neurons and all stops, paired the

spiking activity of one neuron (binned into 5ms intervals to match the behavioral resolution) during a single stop with the position evo-

lution corresponding to that stop window. We then averaged all the position traces, differentiated and smoothed the signal to obtain

the speed trace. We similarly averaged all the spiking activity (corresponding to the different stop windows, pooling all the neurons

together) and smoothed it to obtain the PPN trace. The smoothing is performed with a Gaussian convolution with standard deviation

of about 7ms (var = 50ms2). We computed the standard error of themean error values, similarly. We could then learn the variable a by

computing the slope of the logarithm of the traces to get a rate of decay of 17.08, approximated thereafter by 17.

To reconstruct the M2 error, we first reconstructed its components, corresponding to the negative acceleration and the negative

speed. To reconstruct the negative acceleration signal, we derived the negative acceleration from the speed, and projected it onto

the low-dimensional subspace already derived from the neural responses to get the best neural approximation of it. This approxima-

tion is achieved by a weighted combination of neural responses where the weights can be either positive or negative. To ensure that

the weights are non-negative, we recomputed a new set of weights on the average responses through non-negative least squares, so

that a combination of the neural responses using the new non-negative weightsmatched the low-dimensional response. This yields a

low-dimensional representation of the negative acceleration component with only non-negative weights. We repeated the procedure

to derive a low-dimensional negative speed signal, beginning by projecting the negative of the speed signal onto the low dimensional

space. Finally, the error signal is a positive weighted combination of these two components. To recover theseweights, we defined the

theoretical impulse response function ae-atu(t). We then convolved the separate components with it to get their contribution to the

PPN response. Using non-negative least squares, we found the optimal non-negative weights such that the weighted combination

of the filtered components best fits the PPN response, leading to the predicted response. By linearity, these correspond to the

weights in the original M2 error signal. We then repeated the whole process by removing the STN-PPN projection, and computed

a new predicted response via an updated M2 error signal.

The reliability analysis is similar to that performed for the calcium imaging data.

Extracellular recordings in STN and neural response analysis
The preparation for the STN recordings followed the same procedure as that of M2 and PPN recordings. A motorized manipulator

(Micropositioner Model 660, Kopf) was used to lower a Neuropixels 1.0 probe, at a rate of 20 microns per second, toward STN

(AP: �1.9mm, ML: +1.5mm, DV: +4.5mm) to a depth of 5.5mm. The spikes analyzed were then restricted to be the ones found on

channels corresponding to STN location, taken to be between 4.25mm and 5mm from the pial surface. The data was acquired using

the standard Neuropixels hardware (IMEC) though SpikeGLX (HHMI/Janelia Research Campus). Spike sorting was performed using

Kilosort2 (Pachitariu et al., 2016), and then hand-curated using Phy.

Probe locationwas also verified by usingDiI after a recording session and harvesting the brain postexperiment to recover the probe

track.

Data analysis: As in the M2 and PPN recordings, the animals performed 30min behavioral sessions, and recordings were initiated

before the start of a session and lasted after the end of a session. Both the behavioral and physiology apparatus were simultaneously
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continuously recording an external reference signal (acquisition of 200Hz in behavioral data and 30kHz in physiology data). This signal

was used to align the physiology and behavioral data.

The data was again down-sampled by binning the spikes into 5ms intervals to match the resolution of the behavioral data, and was

processed as done for the M2 and PPN recordings.

To characterize the component of the dynamical state corresponding to the negative acceleration, we considered all the neurons

whose average firing rate is itsmaximum in a 500ms interval, 250ms before the switching point and 250ms after. We performed a low-

rank approximation (k = 5) and derived a low-dimensional subspace that explains most of the energy in the average responses. We

computed the negative acceleration from the speed signal, and projected it onto this subspace to recover the neuronal signal

representing it. We then took this neural signal, and convolved it with h = e-atu(t) to obtain its dynamical state counterpart. This convo-

lution necessarily places the obtained signal outside the low-dimensional subspace, and we then projected it again onto the

subspace to ensure that it belongs there. The neural signals representing the negative acceleration component and the dynamical

counterpart are both obtained using a weighted combination of the average neural responses via positive and negative weights. To

ensure the weights are non-negative, we recomputed a new set of weights (as done in the M2 and PPN data) on the average

responses through non-negative least squares, as a means to recover a signal using only non-negative weights that match the

low-dimensional response of the non-negative acceleration component and its dynamical counterpart. These non-negative weights

span a two-dimensional space, that explained a high amount of energy (39.63%) in the neuronal population response, as it is very

close to being a subspace of the original 5-dimensional subspace. We repeated the same procedure to characterize the component

of the dynamical state corresponding to the negative speed. For this, we considered all the STN neurons whose average activity tran-

sitioned from low to high starting within a 1s interval, 250ms before the switching point and 750ms after the switching point. This was

performed using a procedure similar to that used to characterize PPN speed activity.

The reliability analysis is similar to that performed for the calcium imaging data.

Optotagging in PPN and STN
The preparation for the phototagging recordings followed the same procedure as that of the M2 and PPN recordings. A16-channel

silicone optrode (A1x16-Poly2-5mm-50s-177-OA16LP, Neuronexus) was connected via a 105-mm/0.22 numerical aperture patch

cable (M61L01, Thorlabs) to a solid-state blue laser (Opto Engine), and was lowered to the recording site of interest as done for

PPN and STN. The tip of the optrode was first lowered to around 200um above the recording coordinates of interest, blue light

was then periodically delivered (at a rate of 2Hz) while the optrodewas then progessively lowered slowly in search for units responsive

to light stimulation, adjusting the light stimulation intensity to reduce stimulation artifacts and observe neuronal responses. The final

position of the probe was decided when units responsive to light stimulation were detected and the electrode recording sites

spanned the recording area of interest.

At the beginning and end of each recording sessions, light pulses of 5 ms at a fixed light intensities (tuned between 0.1 and 1 mW

for a given recording session as a function of evoked responses) were repeatedly delivered in the tissue (frequency: 2 Hz), to perform

post-hoc comparison of spontaneous and light-evoked waveform for each sorted unit. Sorting and curation was performed as done

for theM2 andPPN recordings. Units were considered light-responsive if they responded significantly using the SALT algorithm (Kvit-

siani et al., 2013). We also only kept units responding within an 8-ms-period after light stimulus onset, and whose light-evoked wave-

forms closely matched the spontaneous ones. Analysis of neuronal responses was performed as done in the respective sections on

PPN and STN recordings. The recording tract was also marked by coating the probe with DiI as performed for M2, PPN and STN

recordings.

Histological methods and verification
Under very deep anesthesia, mice were perfused transcardially with 0.9% NaCl followed by 4%PFA. The brains were harvested and

post-fixed in 4%PFA at 4�Covernight. In some experiments, brains were extractedwithout transcardial perfusion and only immersed

in PFA overnight. Coronal or sagittal sections (100um thick) were cut using a vibratome (VT2008, Leica). Slices were mounted and

imaged with a confocal system (TCS SP8, Leica) with 10x/0.40NA or 20X/0.75NA objectives (Leica).

Optogenetics: The position and depth of the fiber optic was assessed by delineating tissue damage along the fiber-optic track

track following its removal during brain extraction. Placement was considered correct if the M2 axons in STN were found in proximity

and within a narrow cone region to the optic fiber tip (0.39NA). Viral expression was considered adequate if cortical projection toward

the subthalamic nucleus (through the cerebral peduncle) were strongly visible under the confocal microscope, and fluorescent axons

were observed in STN. This applied to activation, inhibition and control experiments regarding the M2 projections to STN. For exper-

iments silencing STN projections to PPN, viral expression was considered adequate if somas were observed in STN and the injection

site corresponded to the PPN per the reference atlas. These verifications were performed using sagittal brain sections.

Imaging: The imaging location was determined by identify the center of window, obtained by adequate X- and Y-translations cor-

responding to the radius of the window starting from an edge, guided by the sinus in the middle of the window, and defining that

center as an imaging reference. Imaging fields of view were determined and centered to be around 600um along the ML direction

from the origin reference. All imaged neurons in the field of view were considered. This number was further reduced to those whose

activity is 85% explained by the low dimensional activity space, as expounded in the section on data processing. Viral expression in

M2 was assessed through the 2-photon microscope, and imaging was perfomed when expression showed a dynamic range in
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fluorescence due to calcium activity. Injection sites were inspected under the confocal microscope through sagittal brain sections,

and considered adequated when targetted to the STN, observable under the confocal and additionally visually demarcated by struc-

tures observed under the confocal, such that the cerebral peduncle and the SNr.

M2 and PPN recordings: The probe recording in M2 was lowered to (AP: +1mm, ML: +0.5mm, depth: +0.5mm from pial surface)

and the probe recording in PPN was lowered to (AP:�4.7mm, ML: +1.25mm, depth: +3.15mm from pial surface). The position of the

probeswas verified under the confocal microscope using DiI, and that of PPNwas deemed correct by assessing proximity to the PAG

and overlaying a referece atlas to demarcate PPN. These verifications were performed using coronal brain sections. The recording

sites of the probe spanned 375um, and as such all sorted recorded units (with more than 500 spikes per session) were included at the

start of the analysis. This number was further reduced to thosewhose activity is 85%explained by the low dimensional activity space,

as expounded in the section on data processing.

STN recordings: All our neuropixels recordings in STN were performed with the same probe angle, starting from the same coor-

dinates, going to the same depth of 5500um and thereby always reaching the same endpoint. These coordinates and angle were

chosen during experimental design, using a reference atlas. This defined a fixed recording orientation and direction that crossedmul-

tiple brain region, then through the subthalamic nucleus and ended with the tip in the cerebral peduncle. As a check, we indeed

observed changes along the probe length once channels were out of the cerebral peduncle, which corresponded to about 500um

above the tip. We then recreated this direction on the reference brain atlas, recovered the coordinates of recorded regions per

the atlas including the STN, and mapped them to channels on the probe based on the geometry. All sorted recorded units (with

more than 500 spikes per session) that we principally detected on recording sites corresponding the STN location were included

in the analysis. The position of the probe was verified under the confocal microscope using DiI, and it was deemed correct if it cor-

responded to the same starting and endpoint considered by the reference atlas, determined by using brain structures visible under

the confocal such as the cerebral peduncle, the STN and the hippocampus. These verifications were performed using sagittal brain

sections.

Optotagging: In addition to the verifications performed for probe location during extracellular recordings, viral expression was as-

sessed by assessing fluorescence in the recorded region. Verifications for PPN recordings were performed using coronal sections,

and for STN recordings using sagittal sections.

QUANTIFICATION AND STATISTICAL ANALYSIS

The data was analyzed using Python 3, and the statistical test used along with the necessary statistical details are indicated in the

corresponding figure legend. We utilized non-parametric whenever possible to avoid assumptions required for parametric tests.

Statistics for neuronal responses measurements and reliability relied on the Mann-Whitney U-test, unless specified otherwise.

Statistics for all optogenetics bar plots were computed by pooling together all Laser OFF and Laser ON trials, and performing a per-

mutation test with 20000 iterations. For the inhibition experiments, we additionally performed permutation tests by shuffling the trial

labels for each animal separately and then pooling the data together, to account for within-subject dependencies (e.g., Aarts et al.,

2014). This resulted in minor alterations to the p value obtained by directly pooling the data together, without changes to the

significance.
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Figure S1: Parameters of the behavioral model and model fits. Related to Figures 1 and 2.

(A) Plot showing example position traces within one behavioral session. The end stopping position at the landmark 

covers the landmark width.

(B) Graph showing averages of position and speed of the animal in landmark-stop windows after a switching point. 

Each average corresponds to one of four intervals of end positions at the landmark. N=10 animals, 3 sessions each. 

Although the animal stops at different positions along the landmark across trials, the temporal shape of the stopping 

pattern remains the same.

(C) Plot showing how the behavioral model can approximate landmark stops at the single trial level. The solid line 

are the position traces of the animal, and the dashed line are the model fit.

(D) Plot showing the distribution of τ obtained by fitting single trials.

(E) Plot showing the distribution of τ obtained by fitting single trials and averaging the values within a session.

(F) Plot showing the evolution of the average wait time at the landmark during learning as a function of consecutive 

training sessions (N=6 mice).
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(G) Plot showing the evolution of the average number of hits during learning in a habituation phase as a function of 

consecutive training sessions (N=6 mice).  In this habituation phase, there are no landmarks, and mice are tasked to 

stop spontaneously after running and collect reward.

(H) Same as (F) but showing the average number of hits (N=6 mice).

(I) Same as (F) but showing the average number of misses (N=6 mice).

(J) Traces showing the velocity (yellow, red) and position (blue, green) of the animal in versions of the task where 

the landmark is positioned to be near (centered at position 250) and far (centered at position 450).  The velocity 

traces overlap (N=3 mice).

(K) Traces showing the average velocity during the task in five main experiments (N=3 mice per trace).  Both laser 

ON and laser OFF trials were included in the average for the optogenetics experiments.

2



Figure S2: Optogenetics control experiments do not show effects on stopping. Related to Figures 3 and 4.

(A) An AAV virus expressing ChR2 was unilaterally injected in M2 of wild-type mice (N=2) and an optic fiber 

implanted over the Cerebral Peduncle (ipsilateral to the injection site) anteriorly adjacent to STN to optogenetically 

target the M2 efferent fiber tract.

(B) Plots showing the distribution of the first position the animal stops at after position 100.

(C) Plot showing the average velocity aligned to the onset of optogenetic stimulation of M2 efferent fiber tract at 

position 100 on the track. The plot does not show a difference in average velocity on laser trials and non-laser trials 

(Mann–Whitney U test, n.s.).

(D) Schematic detailing control experiments for the unlateral and bilateral optogenetics experiments (N=3 mice for 

unilateral activation, and N=3 mice for bilateral inhibition).  GFP was expressed in M2 instead of ChR2 and 

NpHR3.0.

(E)  Sagittal section showing M2-STN projections expressing GFP.

(F) Plots showing the distribution of the first position the animal stops at after position 100 for the activation control

experiment.
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(G) Plot showing the fraction of miss trials during laser ON and OFF trials for the inhibition control experiment  

(Permutation test, n.s.). 

(H) Plot showing the fraction of miss trials during laser OFF trials in the different optogenetics experiments and 

control experiments (N indicated on the figure).  The high number of misses in the NpHR axonal inhibition 

experiment suggests an effect that extends beyond laser ON trials to laser OFF trials.
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Figure S3: Clustering neuronal activity with dimensionality reduction. Related to Figure 4.

(A) Left. The three initial non-neuronal templates defined for pre-stop, stop and post-stop activity. Middle. The 

projections of the initial three non-neuronal templates onto a 4-dimensional subspace derived through low-rank 

approximation. These correspond to the neural responses that represent the non-neuronal templates. Right. The 

orthonormalized responses that form a basis, generating a 3-dimensional subspace, upon which we can decompose 

our signals. 

(B) Each neuronal response can be written as a combination of four components: the first three correspond to 

weighted versions of the basis functions, and the fourth corresponds to the activity that remains outside the three-

dimensional subspace spanned by the basis. The weights on the templates are used to perform clustering. The 

remaining activity shows some surge after stopping. The 1-dimensional subspace containing the highest energy in 
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the remaining activity will consist of a neural trajectory with activity concentrated after the stop. When added to the 

three basis functions (pre-stop, stop and post-stop), the new set will span the 4-dimensional space obtained initially. 

The decomposition is only used for clustering and not to post-process neural signals.
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Figure S4: Analysis of landmark and mid-track stops. Related to Figure 4.

(A) Left. Graph showing the neurons (271 out of 378), whose neural response at landmark stops, had its energy 

(area under the squared signal) more than 80% explained by the subspace, clustered into three groups (pre-stop, stop

and post-stop) using the templates in Figure 4B. Right. Graph showing the neural responses of the same neurons, in 

the same ordering, but on spontaneous stops. The landmark-stop responses are normalized, and the spontaneous stop

responses are normalized by the peak value of the landmark-stop responses.

(B) Graph showing a scatterplot of the percentage of energy captured by the stop template of Figure 4C, in the 

responses for spontaneous-stops vs landmark-stops. This percentage is the coefficient in Figure 4D divided by the 

total energy of the signal.  Each data point represents a stop neuron (N = 108) taken from (A).

(C) Graph showing box plots for the distribution of the percentage in (C). The orange lines represent the respective 

medians. The mean of the distributions is significantly different (Paired t-test, ***:p=1.01e-11).
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Figure S5: Three key measurements are required to characterize the controller.  Related to Figure 5.

(A) To characterize the input space, we imaged the activity of M2 neurons projecting to STN.

(B) To characterize the input-output relation, we recorded extracellular single-units simultaneously in M2 and 

MLR/PPN.

(C) To characterize the dynamical state of the controller, we recorded extracellular single-unit activity in STN.
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Figure S6: The neural signatures of a dynamical state are absent in M2. Related to Figure 7.

(A) We repeated the exact analysis performed for STN in Figure 7B-D to examine if a low-dimensional signal could 

support the negative acceleration component of the dynamical state in M2. The graph shows the explained variance 

for the STN and M2 population. The variance explained by the M2 population is lower than that explained by the 

STN population. More importantly, the M2 population cannot recreate the trough (local minimum) following the 

peak in the differentiated signal incurred by differentiation seen in (C).

(B) Plot showing M2 neurons whose activity peaked between 250ms before and 250ms after the onset of stops. The 

neurons are ordered by peak timing.

(C) Using the population of (B), as performed in Figure 7D, we derived the best two low-dimensional signals 

representing the negative acceleration component of the error signal (early signal), and its dynamical state 

counterpart (late signal).
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(D) We repeated the exact analysis performed for STN in Figure 7B-D to find a low-dimensional signal could 

support the negative speed component of the dynamical state in M2. The graph shows the explained variance for the 

STN and M2 population. Though the variance for the non-negative speed is lower for M2, the essential difference in

explained variance for M2 lies in explaining the negative acceleration component (A-E).

(E) Plot showing neurons whose activity transitioned from low to high between 250ms before and 750ms after the 

onset of stops. The neurons are ordered by transition timing.

(F) Using the population of (E), as performed in Figure 7G, we derived the best two low-dimensional signals 

representing the negative speed component of the error signal (early signal), and its dynamical state counterpart (late

signal). 
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Methods S1:

Provides additional mathematical details and rationale for modeling assumptions and anatomical considerations.  

Related to Figures 2,3,5-7. 

A - Behavioral model through optimal control.  Related to Figure 2.

Summary of the modeling:

The notion of a trajectory guiding movement appears in various forms in the literature on the control of 

movement (McNamee and Wolpert, 2019; Shenoy et al., 2013; Wolpert and Ghahramani, 2000), and sets a basis for 

optimal feedback control in motor coordination (Todorov, 2004; Todorov and Jordan, 2002). We considered a simple

setting, and modeled the dynamics relating the locomotion plan ut (in track units/s) to the speed of the animal vt by a 

first-order ordinary differential equation parametrized by a time-constant τ:

The parameter τ is fixed and dictates how quickly the speed follows the locomotion plan. The larger the value of τ, 

the less sensitive the change in velocity is to the discrepancy between the velocity and the locomotion plan. The 

scalar α makes our modeling more general (and has a default value of 1). We further bounded ut by forcing it to be 

between two values umin and umax, thereby ensuring that the animal cannot run infinitely fast (Figure 2A). We then 

solved this control problem for the optimal solution via Lagrangian (methods) and found it to be a bang-bang control

policy: the optimal solution consists of having the locomotor plan be at umax from the start of the trial up to a 

switching time, where it abruptly changes to umin. Many trajectories satisfy the constraints of the problem and are 

solutions, particularly ones where the animal slowly ramps down its speed as it approaches the landmark to stop.  

However, these strategies yield a longer time to reward, and the best (optimal) one, adopted by the animal if it aims 

to minimize time to reward, is one where the change is abrupt.

 The velocity fluctuated while the animals were running, leading to multiple peaks that were not followed 

by full stops. The model is fundamentally not designed to capture these fluctuations, but to capture the decay speed 

during landmark stops which is independent of the speed profile before stopping. Indeed, the physical velocity 

engages many downstream brainstem and spinal circuits and is subject to locomotor constraints that forces it to be 

noisy and fluctuating around the theoretical speed. Of course, such fluctuations are not observed when the animal is 

not running, and the rate of decay does not depend on the speed amplitude, reflecting the transition from the ON 

state to the OFF state independently of the fluctuations.

Details of the modeling:
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We modeled the behavior of the animal in a single trial as a minimum-time optimal-control problem. The 

mice were water-regulated, and we assumed that a trained mouse strives to collect the maximum amount of reward 

possible during the session, while its motivation is sustained. As the trials are of variable duration contingent on the 

animal’s movement, maximizing reward is equivalent to minimizing time in a trial to collect reward. From an 

optimal-control perspective, we stated the problem as follows. Starting from an initial position away from the 

landmark, the mouse is tasked to pick a locomotor plan (control policy) that dictates its locomotion pattern so as to 

minimize time to collect reward. This time is minimized by minimizing the time needed to reach the landmark 

position and achieve zero velocity, and thereby initiate waiting at the landmark for 1.5s. The task was based only on 

positive reinforcement; the animal was not punished for miss trials. Furthermore, the animal was allowed to consider

any locomotion trajectory to collect a reward, as long as it held its position at the landmark for 1.5 seconds. As such,

there are no major constraints on the locomotor plan, except (a) how it affects the locomotion speed of the animal, 

and (b) that there is a maximal speed that the animal can achieve. For (a), the locomotion plan (in t.u./s) is a scaled 

version of the desired trajectory that the speed of the animal should follow. Whenever the speed is lower than the 

value dictated by the scaled locomotion plan, the speed should increase, and vice versa. We modeled this by having 

the difference between the plan scaled by a number (αut) and the speed (vt) dictate the rate of change in speed, 

namely the acceleration, up to a multiplicative factor τ. This relation is captured by the simplest possible dynamics 

as a first-order ordinary differential equation between the speed of the animal vt and the locomotor plan ut, 

parametrized by a time-constant τ:

The parameter τ is fixed and dictates how quickly the speed follows the locomotion plan. Specifically, if τ is 0, then 

the speed is equal to the scaled plan. However, if τ tends to infinity, then the rate of change dvt/dt becomes 0, and the

speed never changes despite variations in the plan. The parameter α only makes our modelling more general, as it 

can always be fixed to 1. For (b), as the animal cannot run infinitely fast and thereby has a maximum achievable 

speed, we let the locomotor plan ut be bounded between two values, umin and umax to ensure this condition. However, 

the locomotor plan is allowed to take, for each time point, any value between umin and umax. We further added 

boundary conditions dictating the animal’s initial position, and the desired final position and velocity: the position of

the landmark and zero, respectively. More formally, the control policy ut (representing the locomotion plan) is 

chosen to minimize T, the time to go from position d0 and arrive at the landmark at position dT with velocity vT = 0, 

indicating that the animal just halted. The model can be written in the following form:
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This problem admits an optimal solution for any starting point. The solution can be arrived at by 

constructing the Hamilton-Jacobi-Bellman (HJB) equation and solving it (Bertsekas, 1995). For a linear system, as 

is the case here, the optimal solution will be a bang-bang policy of control. As the linear system is first-order, the 

solution is known to admit at most one switching point (See Example 3.4.3 of (Bertsekas, 1995)). For instance, if dT 

= 250, namely the landmark is at position 250, then the optimal solution consists of forcing ut equals umax until the 

animal reaches a switching time point, then ut becomes umin so that the animal stops at position 250.

B - The M2-STN projection as a route for rapid visually-guided locomotion control. Related to Figure 3.

Our behavioral model indicates a switching point in behavior, and suggests that the brain generates a signal 

at that time. As we expect the signaling to be the result of an instantiated locomotor plan, frontal associative regions 

are good candidates to contain such plans. In fact, activity emanating from the right inferior frontal cortex and the 

pre-supplementary motor area in humans has generally preceded stops in stop-signal reaction tasks and go/no-go 

tasks (Aron and Poldrack, 2006; Eagle et al., 2008; Nachev et al., 2008; Swann et al., 2012). The pre-supplementary 

motor area in humans is of particular interest. Its homologous structure in mice is unclear; however, some of its 

properties have been often considered to coincide with the medial part of M2 (Barthas and Kwan, 2017). 

Additionally, the task is visually guided, and medial M2 has been considered to be part of the visuomotor 

subnetwork in the mouse brain (Barthas and Kwan, 2017; Zhang et al., 2016, 2014; Yamawaki et al., 2016). STN 

receives projections from most of the frontal cortex, and medial M2 is linked with the associative subdivision of the 

BG and STN, which may have a role in visuomotor transformation and integration (Alexander et al., 1986; Bolam et

al., 2000; Hamani et al., 2004; Hintiryan et al., 2016; Hooks et al., 2018; Mandelbaum et al., 2019). We 

hypothesized that the M2-STN pathway may offer a quick route for information to achieve rapid stops. 
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C - Physiological model and theory.  Related to Figures 5-7.

Rationale for modeling assumptions:

Our behavioral model indicates that the animal picks an ON-OFF locomotion plan that drives the velocity 

of the animal. Crucial in that locomotion plan is the switching point, upon which the animal initiates fast braking. 

Our physiological and optogenetics experiments showed neuronal stop signals that may lead the animal to initiate 

stopping, at the switching point. The question remains as to how these stop signals enable locomotion halts. 

Particularly, we then sought a physiological realization of the behavioral model that connects the physiology and 

anatomy to the braking dynamics as depicted by the parameter τ. We modeled the physiological dynamics through a 

feedback control system, whereby the neural circuitry tracks a neuronal reference signal depicting the locomotion 

plan and ensures a quick reaction in velocity at the onset of stopping. To define such a control diagram (Figure 

5A,B), we needed to define the system we are controlling and the controller.

The mesencephalic locomotor region (MLR) in the midbrain is an evolutionarily-preserved structure 

whose electrical stimulation in cats elicits locomotion at a range of speeds and gaits, scaling with the applied 

stimulation frequency (Ryczko and Dubuc, 2013; Shik et al., 1969; Whelan, 1996). Such effects have been 

recapitulated in mice (Roseberry et al., 2016) and optogenetic manipulation of the MLR glutamatergic population 

has been shown to bidirectionally control locomotion (Caggiano et al., 2018; Josset et al., 2018; Roseberry et al., 

2016). We thus considered the glutamatergic population of the MLR as the system we are controlling. Electrical and 

optogenetic stimulation of the MLR shows that activity and speed is sustained beyond stimulation (Roseberry et al., 

2016). The activity decay and locomotion stopping that occurs in such a setting is on the order of seconds after 

stimulation. However, in our task, locomotion halts occur within the first 100ms of our behavioral switching point. 

Because of this short temporal period, we can computationally assume that MLR activity does not decay and 

therefore model the MLR as an ideal integrator, integrating neuronal input to drive the dynamics.

The basal ganglia have been shown to decrease MLR activity, specifically its pedunculopontine nucleus 

(PPN), via the indirect pathway (Roseberry et al., 2016), notably through SNr (Freeze et al., 2013; Ryczko and 

Dubuc, 2013; Liu et al., 2020). Information from the STN reaches the PPN through SNr, supporting an inhibitory 

role of STN onto PPN. Furthermore, STN has direct excitatory projections to PPN (Roseberry et al., 2016; Caggiano

et al., 2018), which we additionally verified by retrograde viral tracing (Figure 5C).  Together, these projections 

have a crucial role in our model for establishing fast input-output dynamics (Figure 5A). The direct STN projections 

to PPN are understudied and their functional role is unclear (Hamani et al., 2004), and this served as a motivation for

our investigation. More generally, SNr projects diffusely to various brain structures, and while we are positing that 

the SNr pathway to PPN controls locomotion, control of other actions are likely mediated via pathways to structures 

other than MLR/PPN.

Mathematical description of diagram  :  
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The modeled system (Figure 5) is a linear time-invariant system (Aström and Murray, 2010; Oppenheim et

al., 1996), where the input-output relations (impulse responses) of its various block components are given through 

the Laplace domain (transfer functions). As convolution in the time domain becomes multiplication in the Laplace 

domain, composition of systems then consists of multiplying rational functions and cancelling out common factors 

in the numerator and denominator.

Our diagram consists of a system to control (MLR/PPN), a controller (M2-STN) and a negative feedback 

loop. The MLR/PPN was modeled as an ideal integrator, whose transfer function is given by . The controller 

consists of the difference between the STN-PPN and STN-SNr-PPN, yielding  as a transfer function. 

Composing the controller with the PPN system amount to multiplying  by , which yields . 

This has the effect of substituting the  in the denominator of the PPN system by . The goal of our 

experiments is to recover  through the M2-PPN recordings, and the dynamical state  of the controller through the 

STN recordings.

The input-output relation of the controller-plant system:

By computing the closed-loop dynamics, we recovered the effect of the parameter a on the decay of PPN 

activity. In particular, if R(s) and Y(s) represent the Laplace transforms of r(t) and y(t) respectively, we then get

, yielding an impulse response of . If the locomotion plan r(t) 

is at a constant baseline value and then transitions to a new constant lower value and remains there, the decay of y(t) 

will then have a rate of m+a. Two terms can then theoretically affect the speed of decay: how much we amplify the 

error signal in the closed-loop (via m) and how much we smooth the differentiated signal (via a). It is then 

theoretically possible to drive the fast decay via only the variable m, if we are only investigating the relation 

between the input r(t) and the output y(t). However, by investigating the input-output relation of the controller, we 

can determine the exact contribution of a, and thereby show that amplification is not enough.

Indeed, the open-loop transfer function is given by , and as such, we have:

. The error signal is then a weighted combination of two components: a speed 

signal and an acceleration signal. At the switching point of r(t) going from high to low, the error becomes negative. 

As neural responses are non-negative, we instead define -e(t) to be the signal sent down from M2 to STN. We then 

have:

.

This signal consists of a negative acceleration component and a negative speed component. The m variable consists 

of only scaling the error signal, and does not interfere with the input-output dynamics of the controller.

The dynamical state of the controller:
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If x(t) denotes the input to the PPN and X(s) its Laplace transform, we have:

 

where   denotes the Laplace transform of the dynamical state. In the time-domain, we 

get the following characterization:

where  corresponds to a version of e(t) smoothed by an exponential decay function of decay rate a. The one-

dimensional signal  is the dynamical state of the controller. The output of the PPN corresponds to integrating the 

difference between the dynamical state and the input to STN:

Our model diagram further suggests that differentiation is implemented by the opposing pathway from STN to PPN. 

In the simplest setting, it specifically suggests that -me(t) is provided by the STN-SNr-PPN pathway, whereas θ(t) is 

provided by the STN-PPN projection to PPN. However, other weighted combinations of these signals also yield the 

same outcomes. Specifically, for non-negative scalars  and , we get:

This mathematical characterization is crucial as it indicates that both types of signals can be sent along each

pathway and still achieve differentiation. Each signal is only required to be slightly amplified on its corresponding 

pathway (STN-PPN for θ and STN-SNr-PPN for -me) as compared to the opposing pathway. The exact weights 

yielding the contribution of these two signals along a pathway will depend, at least, on parameters pertaining to 

projection neuron populations. However, the existence of θ(t) and me(t) are independent of these parameters, and are

necessary to be further transmitted from STN to PPN.

D - Connection between our model and cell-type specific responses.  Related to Figure 6.

Overall, PPN speed activity is reflected in a subpopulation of vglut2+ cells mostly encoding pre-stop and 

stop information.  Figure 6K considers all the vglut2+ and vgat1+ cells, and shows that these two populations, as an 

aggregate, play an opposing role. We expect that the M2 error-signal is rapidly controlling the activity of the vglut2+

population encoding speed, primarily pre-stop neurons, to ensure fast decay of activity in the stop- and post-stop 

phase. The remaining vglut2+ population is however still receiving these error signals that can result, in the 
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aggregate population, in a surge in the stop epoch (through the STN-PPN projection) as well as a slow decay in the 

post-stop epoch (through the STN-SNr-PPN projection).  Aggregate vgat+ cell activity surges during stops, and we 

expect it to play a crucial role in inhibiting downstream circuits, complementary to the role of vglut2+ cells.  While 

the controller in our model is considered to regulate excitatory activity as both STN-PPN and SNr-PPN projections 

target excitatory cells, the vgat+ population might be regulated via interaction with vglut2+ cells (Esposito and 

Arber, 2016) and potentially through feedback mechanism from downstream circuits (Caggiano et al., 2018). The 

question of how vglut2+ cells and vgat+ cells interact with downstream circuits to establish a stop would be an 

important future direction of research.

E - State of the controller and its dynamics. Related to Figure 7.

Derivation details:

Our derived input-output relation suggests that a differentiation operation is implemented prior to the PPN input to 

ensure fast input-output dynamics. This relation relies on delays, and therefore requires a dynamical state to support 

it. This state is a one-dimensional variable θ (Text S2) governed by:

The output of the PPN then corresponds to integrating the difference between the dynamical state and the input to 

STN:

Our physiological model further suggests that differentiation is implemented by sending elements of θ(t) and me(t) 

along two complementary pathways from STN to PPN. As the existence of information related to these two signals 

forms the basis of differentiation, we performed extracellular single-unit recordings in STN to reconstruct elements 

of the error signals, the dynamical state and the differentiation operation (Figure 7A, B).

Comparison between STN and M2 activity:

We asked: is the information described in Figure 7 a characteristic of STN activity, or does it exist in other 

brain areas? We thus repeated the analysis performed for STN activity on the M2 extracellular recording data. The 

best derived two-dimensional subspace could not reconstruct the dynamical state component corresponding to the 

negative acceleration component in the error signal (66.8% versus 27.2% of the theoretical signal variance explained

by STN and M2, respectively) (Figure S6A-C). This negative result also held as we increased the initial low-

dimensional subspace we searched in by doubling the number of dimensions (Figure S6A,D). Indeed, the neural 

stop-related activity in STN showed a very fine tuning to stopping (Figure 7C), unlike that of M2 activity (Figure 

S6B). However, less temporal precision is required to represent the negative speed signal, and we found some 

correlates in M2 for the dynamical state corresponding to it (42.2% versus 28.2% of the theoretical signal variance 
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explained by STN and M2, respectively) (Figure S6D-H). However, it is the negative acceleration component that 

drives the dynamics to halt initially, and the negative speed component is mainly required to sustain the halt by 

canceling out rebound effects from the negative acceleration component.

18


	Dynamic control of visually guided locomotion through corticosubthalamic projections
	Introduction
	Results
	Mice were trained to run, stop, and wait at visual landmarks to collect reward
	The behavior suggests a sudden switch in locomotion state
	Activating M2 axons in STN leads to stopping
	Stop activity is seen in M2-STN neurons on landmark stops but not mid-stops
	Behavioral dynamics can be physiologically realized through feedback control
	Fast input-output dynamics are enabled by mathematical differentiation
	STN supports the dynamical state required to drive the dynamics

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	Surgery
	Behavioral task, equipment and training
	Behavioral model
	Optogenetic manipulations
	Calcium imaging and neuronal response analysis
	Extracellular recordings in M2 and PPN and neural response analysis
	Extracellular recordings in STN and neural response analysis
	Optotagging in PPN and STN
	Histological methods and verification

	Quantification and statistical analysis


	CELREP111139_mmc3.pdf
	celrep_111139_mmc1.pdf
	 Figure S1: Parameters of the behavioral model and model fits. Related to Figures 1 and 2.
	If x(t) denotes the input to the PPN and X(s) its Laplace transform, we have:
	
	where denotes the Laplace transform of the dynamical state. In the time-domain, we get the following characterization:
	
	where corresponds to a version of e(t) smoothed by an exponential decay function of decay rate a. The one-dimensional signal is the dynamical state of the controller. The output of the PPN corresponds to integrating the difference between the dynamical state and the input to STN:
	
	Our model diagram further suggests that differentiation is implemented by the opposing pathway from STN to PPN. In the simplest setting, it specifically suggests that -me(t) is provided by the STN-SNr-PPN pathway, whereas θ(t) is provided by the STN-PPN projection to PPN. However, other weighted combinations of these signals also yield the same outcomes. Specifically, for non-negative scalars and , we get:
	
	This mathematical characterization is crucial as it indicates that both types of signals can be sent along each pathway and still achieve differentiation. Each signal is only required to be slightly amplified on its corresponding pathway (STN-PPN for θ and STN-SNr-PPN for -me) as compared to the opposing pathway. The exact weights yielding the contribution of these two signals along a pathway will depend, at least, on parameters pertaining to projection neuron populations. However, the existence of θ(t) and me(t) are independent of these parameters, and are necessary to be further transmitted from STN to PPN.
	D - Connection between our model and cell-type specific responses. Related to Figure 6.
	Overall, PPN speed activity is reflected in a subpopulation of vglut2+ cells mostly encoding pre-stop and stop information. Figure 6K considers all the vglut2+ and vgat1+ cells, and shows that these two populations, as an aggregate, play an opposing role. We expect that the M2 error-signal is rapidly controlling the activity of the vglut2+ population encoding speed, primarily pre-stop neurons, to ensure fast decay of activity in the stop- and post-stop phase. The remaining vglut2+ population is however still receiving these error signals that can result, in the aggregate population, in a surge in the stop epoch (through the STN-PPN projection) as well as a slow decay in the post-stop epoch (through the STN-SNr-PPN projection). Aggregate vgat+ cell activity surges during stops, and we expect it to play a crucial role in inhibiting downstream circuits, complementary to the role of vglut2+ cells. While the controller in our model is considered to regulate excitatory activity as both STN-PPN and SNr-PPN projections target excitatory cells, the vgat+ population might be regulated via interaction with vglut2+ cells (Esposito and Arber, 2016) and potentially through feedback mechanism from downstream circuits (Caggiano et al., 2018). The question of how vglut2+ cells and vgat+ cells interact with downstream circuits to establish a stop would be an important future direction of research.
	E - State of the controller and its dynamics. Related to Figure 7.
	Derivation details:
	Our derived input-output relation suggests that a differentiation operation is implemented prior to the PPN input to ensure fast input-output dynamics. This relation relies on delays, and therefore requires a dynamical state to support it. This state is a one-dimensional variable θ (Text S2) governed by:
	
	The output of the PPN then corresponds to integrating the difference between the dynamical state and the input to STN:
	
	Our physiological model further suggests that differentiation is implemented by sending elements of θ(t) and me(t) along two complementary pathways from STN to PPN. As the existence of information related to these two signals forms the basis of differentiation, we performed extracellular single-unit recordings in STN to reconstruct elements of the error signals, the dynamical state and the differentiation operation (Figure 7A, B).
	Comparison between STN and M2 activity:
	We asked: is the information described in Figure 7 a characteristic of STN activity, or does it exist in other brain areas? We thus repeated the analysis performed for STN activity on the M2 extracellular recording data. The best derived two-dimensional subspace could not reconstruct the dynamical state component corresponding to the negative acceleration component in the error signal (66.8% versus 27.2% of the theoretical signal variance explained by STN and M2, respectively) (Figure S6A-C). This negative result also held as we increased the initial low-dimensional subspace we searched in by doubling the number of dimensions (Figure S6A,D). Indeed, the neural stop-related activity in STN showed a very fine tuning to stopping (Figure 7C), unlike that of M2 activity (Figure S6B). However, less temporal precision is required to represent the negative speed signal, and we found some correlates in M2 for the dynamical state corresponding to it (42.2% versus 28.2% of the theoretical signal variance explained by STN and M2, respectively) (Figure S6D-H). However, it is the negative acceleration component that drives the dynamics to halt initially, and the negative speed component is mainly required to sustain the halt by canceling out rebound effects from the negative acceleration component.



