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Multiplexed action-outcome representation by
striatal striosome-matrix compartments detected
with a mouse cost-benefit foraging task
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Learning about positive and negative outcomes of actions is crucial for survival and under-

pinned by conserved circuits including the striatum. How associations between actions and

outcomes are formed is not fully understood, particularly when the outcomes have mixed

positive and negative features. We developed a novel foraging (‘bandit’) task requiring mice

to maximize rewards while minimizing punishments. By 2-photon Ca++ imaging, we mon-

itored activity of visually identified anterodorsal striatal striosomal and matrix neurons. We

found that action-outcome associations for reward and punishment were encoded in parallel

in partially overlapping populations. Single neurons could, for one action, encode outcomes of

opposing valence. Striosome compartments consistently exhibited stronger representations

of reinforcement outcomes than matrix, especially for high reward or punishment prediction

errors. These findings demonstrate multiplexing of action-outcome contingencies by single

identified striatal neurons and suggest that striosomal neurons are particularly important in

action-outcome learning.
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Behavior is powerfully sculpted by learning from reinforce-
ment, with rewards increasing and punishments decreasing
the propensity to engage in specific actions1. The striatum

has been implicated in reinforcement learning (RL) mechanisms
that allow animals to adapt their behavior in changing environ-
ments by monitoring associations between actions and
outcomes2–10. Striatal projection neurons (SPNs) encode asso-
ciations between actions and rewarding outcome, i.e., outcome
activity is specific for actions7,11,12. However, in naturalistic set-
tings, the same action could produce both rewarding and aversive
outcomes13–17, and extensive research has shown that aversive
learning also depends on the striatum18–22. A fundamental
remaining question thus is how SPNs represent opposing rein-
forcement consequences of actions and use them for learning.

The underlying mechanisms of RL are often studied using
probabilistic and non-stationary bandit tasks, which require trial-
and-error learning in order to maximize only rewards to be
obtained1,23–32. We developed a ‘cost–benefit bandit (CBB) task’ to
bring the advantages of bandit task protocols to address this mixed
outcome context. In this dynamic foraging task, each of two
available actions is probabilistically linked to outcomes of opposing
valence, and the mice learn action–outcome contingencies to
maximize reward delivery and minimize air puff delivery.

To address the question of whether the striatal system learns
about the rewarding and aversive outcomes of actions in parallel, or
whether it learns the overall value of actions, we recorded the activity
of thousands of SPNs during the CBB task by 2-photon Ca++

imaging and tracked their encoding of action–reward–airpuff asso-
ciations in the mid-dorsal sector of the caudoputamen. We found
large numbers of SPNs responding in relation to both rewarding and
aversive outcomes of a given action. To our surprise, among all
outcome-responsive SPNs, equal numbers of neurons were active in
relation to outcomes with the same or opposite valence. On a
population level, both outcomes were represented independently in
two partially overlapping populations of neurons, resulting in a
multiplexed representation. This finding is important, as it suggests
that striatal reward-related activity might not reflect the integrated
value, but rather, specific outcomes.

The RL perspective hypothesizes that the value of actions is
updated using prediction errors (PEs). The striatum has been
implicated in the PE signals33,34, which are transferred to
dopamine-related circuitry35–39. Yet it has been unclear whether
SPNs represent PEs by integrating the outcomes of opposing
valence, or whether they independently represent reward pre-
diction errors (RPEs) and punishment prediction errors (PPEs).
Our findings suggest that the activity of outcome-selective SPNs
is better accounted for by separate RPE and PPE as compared to
single integrated PEs, underscoring parallel coding of rewarding
and aversive learning variables.

Computational work has suggested that SPNs in the striosome
compartment might specifically function in shaping PE signals,
thereby providing learning signals for matrix neurons to learn action
values40–44. It is thus possible that PE-based updating, and mod-
ulation of dopaminergic activity, could arise, in part at least, from
striosomes, based on anatomical and electrophysiological studies
demonstrating strong projections from the striosome compartment
to dopamine-containing neurons in the substantia nigra45–49.

In parallel, the use of approach-avoidance paradigms has led to
the suggestion that striosomal circuits could be part of a con-
served mechanism for facing critical decisions requiring an esti-
mate of cost-benefit evaluation14,16,50–52. We addressed this issue
by visually identifying striosomal SPNs (sSPNs) and matrix SPNs
(mSPNs) in and around the most dorsal band of striosomes by
using their birthdates to label striosomes48,53,54. sSPNs and
mSPNs exhibited marked differences in their encoding of out-
comes. Outcome encoding by sSPNs was particularly strong when

RPE or PPE was high, a finding in accord with the proposed role
for striosomes as being part of the circuit that calculates the
learning signals41. Notably, we did not find differential encoding
of motor behavior. Hence, the learning function may be a prin-
cipal function of striosomes added to other shared attributes with
neurons of the surrounding matrix55.

We suggest that multiplexed encoding of action–outcome
associations and PEs are key characteristics of large numbers of
SPNs in the anterodorsal striatum, that striosomes in this region
are particularly sensitive to error signals of both positive or
negative valence outcomes, and that models incorporating these
features could be of great value in understanding how striatal
circuits underpin adaptive behaviors.

Results
A dynamic foraging task with rewarding and aversive out-
comes. Mice were trained on the CBB task with rapidly changing
action–reward and action–air puff contingencies. Head-fixed mice,
with their forepaws on a wheel (Fig. 1a), initiated trials by holding
the wheel still for 2 s (Fig. 1b). Mice had 3 s to make a leftward or
rightward response. Both actions were probabilistically linked to
receipt of rewarding (water) and/or punishment (air puff delivered
to the face) outcomes. The action–reward and action–puff con-
tingencies changed rapidly without cueing, and the reward and
puff block changes were made independent of one another (Fig. 1c)
after mice received 6–15 rewards or avoided this number of puffs.
Reward and puff action–outcome contingencies switched inde-
pendently of one another; actions could lead to one of four out-
come pairs (reward–puff, reward–no puff, no reward–puff, and no
reward–no puff). Mice performed hundreds of trials (average: 366;
range: 247–585) per session, with tens of reward (mean: 20.4;
range: 14–34) and puff (mean: 22.9; range: 14–38) block switches.
They reliably adapted their behavior within blocks with a given
action–reward or action–puff contingency (Fig. 1d) and around
action–reward or action–puff contingency switches (Fig. 1e). We
compared choice behavior as a function of the actions and out-
comes of the previous two trials (Fig. 1f), and we performed an
autoregression analysis using the last five trials (Fig. 1g). Both
analyses show that mice incorporate outcomes of multiple past
trials rather than relying on a strict win-stay/lose-shift strategy.

SPN activity represents associations between actions and
multiple outcomes. We used 2-photon imaging to measure Ca++

activity of GCaMP6s-expressing SPNs via a cannula placed above
the left striatum (Fig. 2a). In every session, we recorded a new
field of view, resulting in a total of 5831 unique neurons
(75 sessions; 13 mice). Every field of view contained SPNs of both
striosome (n= 2249) and matrix (n= 3582) compartments
(Fig. 2b). Only low percentages of striosomal neurons were
labeled, but with this preparation we could identify the com-
partments based on labeling of the neuropil. We regarded every
neuron in a red-labeled neuropil cluster as being a striosomal
SPN. There was no significant effect of the imaging cannula on
the number of sessions required to learn this task (Supplementary
Fig. 1a). In trained mice, the response time was higher in mice
with a cannula (p < 0.01; independent t-test), but otherwise the
performance of the mice was identical (Supplementary Fig. 1b–e).

We identified individual Ca++ events in ΔF/F traces using a
custom algorithm (see the “Methods” section, Supplementary
Fig. 2a). By use of a chi-square test, we compared the number of
trials with a Ca++ transient in the 3 s following outcome delivery
to identify neurons with selective responses to specific actions and
outcomes. We did not observe neurons that were tonically active
but consistently inhibited by one or more task event. Many
neurons exhibited strong activity selective for rewarding outcomes,
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puff outcomes and chosen actions (Fig. 2c, d; examples of neurons
in Supplementary Fig. 2b, c). More neurons responded to the
absence than to the presence of rewarding outcome (p < 0.05,
t= 2.89, df= 12, paired t-test) and more neurons responded to the
presence than to the absence of aversive puff outcome (p < 0.001,
t= 6.34, df= 12, paired t-test). We found no significant difference
in the number of neurons active for actions ipsilateral or
contralateral to the imaged hemisphere.

Following evidence that SPNs encode action–outcome associa-
tions for reward11,12, we tested whether reward– and
puff–outcome activity was selective for specific actions with two
complementary approaches. First, for every neuron, we used a
stepwise logistic regression analysis to determine which factor(s)
among the chosen action and received outcomes could best
predict whether or not a transient occurred in a trial (using a
cutoff of p < 0.05). We then identified neurons active in relation
to a factor as neurons that included that factor in their model.

The activity of the neurons identified in this analysis, averaged
over all trials for a given action–outcome combination, is
illustrated in Fig. 2e. The same analysis using half the trials for
model fitting and the other half for calculating the average
responses produced similar results (Supplementary Fig. 2d). We
also used a more conservative approach, employing sequential
chi-square analyses. We found many reward-selective and puff-
selective SPNs among the action-selective SPNs (Supplementary
Fig. 2e, f) and action selective neurons among reward- and puff-
selective neurons (Supplementary Fig. 2g, h). Finally, we used a
regression analysis to find the regression coefficients for actions,
reward and puff outcomes for every neuron imaged (Supple-
mentary Fig. 2i, j). These findings indicate that the striatal
neurons encoded action–puff contingencies similarly to their
encoding of action–reward contingencies.

We asked whether action–outcome contingency-related activity was
present in the first trial after a block switch, or instead developed within a
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block with a given action–outcome contingency. For neurons with
significant encoding of action–outcome contingencies, we quantified the
percentage of trials with these actions and outcomes in which a Ca++

transient occurred. Neurons that were active specifically for an action-
reward combination were more active in the first such trial after a switch
as compared to other trials with the same action and outcome
(Supplementary Fig. 2k, p<0.005, t= 3.51, df= 12, repeated measures t-
test), as were neurons active specifically for an action–puff combination
(p< 0.001, t= 6.66, df= 12). No difference was observed for neurons
that were active for a given action and the omission of reward or puff.

Next, we asked whether action–reward and action–puff
contingencies were represented by separate or overlapping

populations of SPNs. We found in our stepwise regression
analysis that 34.66 ± 1.1% of neurons (mean ± SEM, n= 13 mice)
encoded combinations of actions and both rewards and puffs
(Fig. 2f). We used a second regression analysis to identify the
neurons that encoded each of the 8 possible action–reward–puff
associations (Fig. 2g; examples of neurons in Supplementary
Fig. 2l). The average activity of action–reward–puff neurons for
the 8 possible trial types (chosen action × reward outcome × puff
outcome) showed selective responses for specific combinations
(Fig. 2h), which we again confirmed in an additional analysis in
which half of the trials were used for identifying neuron-types
and the other half for quantifying the average responses
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(Supplementary Fig. 2m). Neurons encoding all three factors had
stable action encoding. Among the neurons that encoded both an
action–reward and action–puff association, almost all encoded
both outcomes for the same action (Fig. 2i, j; same action:
8.5 ± 0.9% of all neurons, different: 0.1 ± 0.1%; n= 13 mice,
p < 0.001, paired t-test, t= 10.35, df= 12). These analyses
demonstrated that SPNs can encode associations of multiple
outcomes with a given action.

Multiplexed SPN encoding of reward and aversive outcomes of
actions. The responses of the individual SPNs could represent
outcome value (i.e., value coding) if the activity signaled good
(reward and/or no puff) or bad outcomes (no reward and/or puff).
Alternatively, action–outcome encoding could be multiplexed such
that, as a population, the SPNs would respond to all combinations
of actions and outcomes without being biased toward specific
combinations. In this case, partially overlapping populations of
single SPNs would encode each action–outcome contingency, and
single SPNs encoding both outcomes would not necessarily
represent the combined value of the outcomes. Our results favor
this latter form of multiplexed action–outcome encoding (Fig. 3).

Many single SPNs responded to both reward and puff or to the
absence of both. Chi-square analyses detected puff-selective and
no-puff selective SPNs among the reward neurons and no-reward
neurons (Fig. 3a). With ANOVA, we found no interaction in the
distribution of puff/no-puff neurons amongst the reward/no-
reward population (Fig. 3a; p= 0.83, F= 0.05, n= 13 mice), and
only a significant main effect of puff outcome (p < 0.001,
F= 33.74). Conversely, when we compared the distribution of
reward and no-reward selective SPNs among the puff- and no-
puff-selective neurons (Fig. 3b) with ANOVA, we found a
significant main effect of reward outcome (p < 0.05, F= 4.28) but
no interaction in the distribution of reward/no-reward neurons
amongst the puff/no-puff neuron population (Fig. 3b; p= 0.84,
F= 0.04). These findings suggest that the selectivity of a given
SPN for one outcome did not depend on the selectivity for the
other outcome. The activity of all neurons responding to both
outcomes is shown in Fig. 3c, averaged over all trials for each of
the four different reward–puff combinations.

To compare value encoding and multiplexed outcome encoding
directly, we identified ‘value neurons’, i.e., SPNs whose activity
reflected that an action was good or was bad (good outcomes:
reward and no puff; or bad outcomes: puff and no reward), and
‘non-value neurons’, i.e., SPNs that responded in relation to the
presence or absence of both outcomes. We found similar
proportions of value and non-value neurons among the recorded
neurons; p > 0.05, t= 0.4, df= 12, paired t-test, Fig. 3d). The value

and non-value neurons did not detectably differ in their selectivity
for reward or puff (Fig. 3e, Supplementary Fig. 3a).

The representation of both ‘good’ and ‘bad’ outcomes in single
neurons could potentially be accounted for by differences in
action selectivity for both outcomes (a neuron could be active in
trials where left choices lead to reward or right choices lead to air
puffs). This possibility appeared unlikely, because we found stable
action selectivity (Fig. 2j). We further tested this idea by
quantifying the activation of neurons encoding action–reward–-
puff interactions in all eight action–reward–puff trial types. SPNs
that encoded the good or bad outcome of one action, as a
population, were not activated when the mouse selected the
opposite action and received outcomes of opposite value
(Supplementary Fig. 3b). Hence, the population activity of the
striatal SPNs encoded combinations of outcomes in a multiplexed
manner so that their activity reflected multiple outcomes of
actions rather than the overall value of an action.

Encoding of multiplexed prediction errors. We used RL models
to gain more insight into the behavior and to test how trial-by-
trial PEs for rewarding and aversive outcomes were represented
in the SPNs. In such models, costs and rewards associated with
actions are typically combined into one scalar value, and for every
action one action-value is learned. However, the observed activity
of SPNs in mice performing the CBB task suggested that these
outcomes could be represented in parallel for cost-based and
reward-based associations. We therefore adapted existing RL
models to integrate costs and benefits by means of two alternative
approaches. In the first model, one set of action values (Q) is used
to model the expected overall value of the two possible actions.
When outcomes are delivered, reward and puff outcomes are
weighted with the sensitivity parameters βrew and βpuff and
combined into one outcome value V (Eq. (1)), which is compared
with the predicted value Q to calculate one PE (Eq. (2)), and to
update the single set of Q-values (Eq. (3)). Three learning rates
were used (for chosen action: α1: if outcome was delivered; α2: if
outcome was not delivered; for non-chosen actions: γ).

VðtÞ ¼ βrew � RewardðtÞ þ βpuff � Puff ðtÞ ð1Þ

PEðtÞ ¼ VðtÞ � QchosenðtÞ ð2Þ

Qchosenðtþ 1Þ ¼
QchosenðtÞ þ α1 � PE if reward=puff delivered

QchosenðtÞ þ α2 � PE if no outcome delivered

(

Qunchosenðt þ 1Þ ¼ QunchosenðtÞ � ð1� γÞ
ð3Þ

This single set of action values, which represents the value
combining the reward and puff outcomes, is used to make a

Fig. 2 Representations of action-reward–puff combinations by SPNs. a Imaging setup and preparation. b Example of imaging field-of-view showing
GCaMP6s-expressing neurons (green). tdTomato (red) expressed in the cell bodies and neuropil demarcates the striosome compartment. Seventy-five of
such fields-of-view were imaged in a total of 13 mice. c Two sample neurons during 10min of recording. Neuronal transients occurred selectively for
action–reward–puff associations during the outcome period. d Percentage (mean ± SEM) of neurons selectively responding to chosen action (left:
12.1 ± 1.4%, right: 7.8 ± 1.2%), reward outcomes (reward: 13.1 ± 1.8%, no reward: 22.7 ± 2.2%), and puff outcomes (puff: 23.0 ± 2.5%, no puff: 4.8 ± 0.6%).
More neurons responded to the absence than to the presence of rewarding outcome (p= 0.013, t= 2.89, n= 13 mice, two-sided paired t-test), and more
neurons responded to the presence than to the absence of aversive puff outcome (p= 0.00037, t= 6.34, n= 13, two-sided paired t-test). *p < 0.05;
***p < 0.001; two-sided paired t-test. e Activity of neurons that represented action-outcome associations, averaged over all trials for a given action-
outcome combination per session. Activity of each neuron was normalized to its average transient rate for all trials (left: action–reward representations;
right: action–puff representations). f Percentage of neurons per mouse with chosen action, reward, puff, 2-way interactions, and 3-way interactions as
significant predictors in a stepwise regression analysis (mean ± SEM, n= 13). g Percentage of neurons with activity selective for the 8 possible
action–reward–puff combinations, identified in a stepwise regression analysis (mean ± SEM, n= 13). h Average activity of the neurons in (g), shown
separately for the 8 different trial types. Neuronal activity was normalized to the average transient rate. i Joint distribution of the number of neurons
responding to different action–reward and action–puff associations. j Among the neurons that selectively responded to both an action–reward and
action–puff associations, the vast majority had a stable action-preference (p= 1e−7, two-sided paired t-test, n= 13, mean ± SEM). Source data are
provided as a Source Data file.
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decision (Eq. (4)).

PRðtÞ ¼ 1
1þeβ*ðQR ðtÞ�QL ðtÞÞ

PLðtÞ ¼ 1� PRðtÞ
ð4Þ

We refer to this model as the integrated model.
In the second model (Fig. 4), two parallel sets of Q-values are

estimated: Qrew for reward and Qpuff for puff. PEs are calculated
separately for both outcomes (Eq. (5)), and both sets of Q-values
are updated in parallel using two sets of learning rates (α and γ,
respectively), for reward and for puff (Eq. (6)).

RPEðtÞ ¼ Reward� Qchosen
rew ðtÞ

PPEðtÞ ¼ Puff � Qchosen
puff ðtÞ ð5Þ

Qchosen
rew ðt þ 1Þ ¼ Qchosen

rew ðtÞ þ αrew � RPE if rewarded

Qchosen
rew ðtÞ þ αunrew � RPE if not rewarded

(

Qunchosen
rew ðt þ 1Þ ¼ Qunchosen

rew ðtÞ � ð1� γrewÞ

Qchosen
puff ðt þ 1Þ ¼

Qchosen
puff ðtÞ þ αpuff � PPE if puffed

Qchosen
puff ðtÞ þ αnopuff � PPE if not puffed

(

Qunchosen
puff ðt þ 1Þ ¼ Qunchosen

puff ðtÞ � ð1� γpuff Þ
ð6Þ

Decisions are then based on the integration of both sets of Q-
values (Eq. (7)), weighted by βrew and βpuff to allow for differences
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Fig. 3 Combined reward–puff representations in single neurons do not always reflect outcome value. a Percentage (mean ± SEM) of reward-selective
(puff: 27.6 ± 3.6%; no puff: 9.7 ± 2.2%) and no-reward-selective (puff: 29.0 ± 4.2%; no puff: 9.7 ± 1.6%) neurons that were selective for the puff outcome,
as identified using chi-square analysis (n= 13 mice for all panels, average percentage per mouse is shown). There was a significant main effect of the
percentage of puff neurons (p= 1e−7, repeated measures ANOVA) but no reward–puff interaction (p= 0.83). b Percentage of puff- and no-puff-selective
neurons that were selective for reward/no-reward outcome (puff selective: reward: 16.9 ± 3.2%, no reward: 24.8 ± 3.7%; no-puff-selective: reward:
28.7 ± 7.4%, no reward: 34.5 ± 4.6%, mean ± SEM, n= 13). There was a significant main effect of puff neurons (p= 0.044, repeated measures ANOVA)
but no interaction between reward and puff (p= 0.84). c A stepwise regression analysis identified neurons with reward and puff outcome interactions.
Session-averaged activity of these neurons is shown for trials with different reward–puff combinations. d Neurons were split into value and non-value type
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different for reward (left panel; value: 0.74 ± 0.01 (mean ± SEM), non-value: 0.71 ± 0.01, p > 0.05, t= 2.1, df= 12, two-sided paired t-test, n= 13) or puff
(right panel; value: 0.69 ± 0.01, non-value: 0.67 ± 0.01, p > 0.05; t= 1.03, df= 12, two-sided paired t-test, n= 13). Source data are provided as a Source
Data file.
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in sensitivity to reward and puff outcomes.

ΔQR�L
rew ðtÞ ¼ βrew � ðQR

rewðtÞ � QL
rewðtÞÞ

ΔQR�L
puff ðtÞ ¼ βpuff � ðQR

puff ðtÞ � QL
puff ðtÞÞ

PRðtÞ ¼ 1

1þ eðβ0�ΔQR�L
rew ðtÞþΔQR�L

puff ðtÞÞ

PLðtÞ ¼ 1� PRðtÞ

ð7Þ

We refer to this model as the parallel model.

The parallel model predicted behavior slightly but non-
significantly better in cross-validation (Supplementary Fig. 4a).
Models with reduced number of parameters had lower prediction
accuracy in a test set (Supplementary Fig. 4b). We also tested the
history dependency of decision-making by setting the learning
rates to 1, resulting in a win-stay/lose-shift model, and again
found that this significantly impaired model performance.

Next we tested whether the PE variables from the two models
could account for the neuronal activity using a stepwise logistic
regression model. We found that both reward and puff outcomes
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could account for firing in more neurons than could the
integrated value of the outcome (Supplementary Fig. 4c; reward
vs. combined: p < 0.05, t= 2.99; puff vs. combined: p < 0.05,
t= 2.62; df= 12, paired t-tests). Similarly, the addition of
separate RPE and PPE significantly improved the prediction of
transients in more neurons than the addition of an integrated PE
(RPE vs. combined PE: p < 0.05, t= 2.27; PPE vs. combined PE:
p < 0.05, t= 2.81; df= 12, paired t-tests). We confirmed these
results using a partial regression analysis performed on the
residuals of the activity against the outcomes, against the residuals
of the prediction errors against the outcomes. There were
significantly more neurons with a significant effect of adding
RPE or PPE than with a combined PE (Supplementary Fig. 4d,
reward: p < 0.005, t= 6.12, df= 12; puff: p < 0.001, t= 6.84,
df= 12, repeated measures t-test).

We further analyzed these results by focusing on ‘value
neurons’, whose activity reflected whether the outcome was good
or bad, and ‘non-value neurons’, whose activity reflected a mix of
good and bad outcomes (Supplementary Fig. 4e). In ‘non-value
neurons’, we found significantly more neurons whose firing could
be accounted for by puff and reward outcomes than by combined
outcomes (reward: p < 0.01, t= 3.13, df= 12; puff: p < 0.005,
t= 3.72, df= 12; repeated measures t-test), and significantly
more neurons with firing that could be explained by PPE than by
combined prediction errors (p < 0.005, t= 3.46, df= 12). For
‘value neurons’, there was a similar trend but without statistical
significance; but the parallel model still accurately described
neuronal firing, even in neurons that conform to an integrated
outcome encoding scheme. Therefore, we used the parallel cost-
benefit RL model to derive reward- and puff-specific action values
and prediction errors (Fig. 4a–d).

With this model, we found that the relative difference in the
inferred positive and negative action values predicted the selected
actions of the mice (Fig. 4e, f). The model predictions were
systematically correlated with reaction times and anticipatory
licking in the 1-s period preceding the outcome (Fig. 4g). Hence,
the model predictions could be generalized to behavioral variables
beyond the choices and their outcomes that were used to fit
the model.

We further characterized the modulation of the observed
reward and puff outcome activity by RPE and/or PPE. The
activity of reward-responsive and puff-responsive neurons was
correlated with model-derived RPE (reward neurons: r= 0.89,
p < 0.001; no-reward neurons: r=−0.76, p < 0.05; Fig. 4h) and
PPE (puff neurons: r= 0.92, p < 0.001; no-puff neurons:
r=−0.51, p > 0.05; Fig. 4i) during the 3 s window after outcome
delivery. RPE encoding was significantly stronger in ‘reward
neurons’ than in ‘puff neurons’ (p < 0.001, z= 3.37, Fisher z
transformation) and stronger in ‘no-reward neurons’ than in ‘no-
puff neurons’ (p < 0.005, z=−2.73). PPE encoding was stronger
in ‘puff neurons’ than in ‘reward neurons’ (p < 0.05; z= 2.03) and
stronger in ‘no-puff neurons’ than in ‘no-reward neurons’
(p < 0.001, z=−3.49). In neurons modulated by both reward
and puff outcomes, as found by use of stepwise regression
analysis (Fig. 2), outcome-related activity was modulated by both
RPE and PPE (reward–puff neurons, RPE: r= 0.68, p < 0.01; PPE:
r= 0.68, p < 0.01; no-reward–puff neurons, RPE: r=−0.82;
p < 0.001; PPE: r= 0.45; p < 0.05; reward–no-puff neurons, RPE:
r= 0.88; p < 0.001; PPE: r=−0.11; p < 0.05; no-reward–no-puff
neurons: RPE: r=−0.40; p > 0.05; PPE: r=−0.5; p < 0.05; Fig. 4j).
The modulation of neuronal activity was observed in the period
after the outcome was delivered. An alternative interpretation,
that this activity reflected differences in reward and puff
anticipation before outcome delivery, seems unlikely, given that
it should produce higher neuronal activity in trials with high
reward/puff expectation, the opposite of what we observed.

Stronger encoding of outcomes and PEs in striosomes than in
nearby matrix. We tested the hypothesis that mSPNs differen-
tially encode ‘motor’ and sSPNs ‘limbic’ reinforcement-related
information. First, we identified action- and outcome-encoding
neurons using chi-square analysis (Fig. 5a). We did not find a
compartmental difference between the number of neurons
encoding chosen actions. However, more sSPNs than mSPNs
were selectively activated for reward (p < 0.05, t= 2.30, df= 12,
repeated measures t-test), puff (p < 0.05, t= 2.23, df= 12) or no-
puff (p < 0.05, t = 2.77, df= 12) outcomes. The distribution of
single-neuron regression coefficients concurred with these results
(Fig. 5b); we observed significant differences in outcome encoding
between the striosomal and matrix populations (reward:
p < 0.005, KS= 0.053; puff: p < 0.01, KS= 0.051; n= 2249 sSPNs
and 3582 mSPNs, Kolmogorov–Smirnov test), but not in action
encoding.

Task-related actions are strongly linked to outcomes. We
therefore tested whether mSPNs had a stronger encoding of
movements than sSPNs during intertrial intervals (ITIs), times
during which the actions were likely to be less related to task
performance. We identified the onset and offset of wheel
movement bouts during ITIs. Similar proportions of neurons in
each compartment were modulated by movement acceleration
and deceleration regardless of movement direction (Supplemen-
tary Fig. 5a–f). Similar proportions of sSPNs and mSPNs were
modulated for maximum acceleration or deceleration of wheel
movements during ITIs (Fig. 5c). We similarly aligned neuronal
activity to the onset of licking bouts during the entire session or
ITI period and found no differences in the proportion of
responsive sSPNs and mSPNs (Supplementary Fig. 5g, h). Finally,
we aligned licks during ITIs to the time of neuronal events to
quantify the number of neurons with activity coincident with
licking (Fig. 5d) and again found no difference. These results
point to a similar activation of sSPNs and mSPNs in relation to
movements during trials and ITIs.

Striosomes have been proposed to function as critics in actor-
critic RL models41. Our finding that sSPNs had a stronger
encoding of both positive and negative outcomes is consistent
with this view. We further tested this proposition by comparing
modulation of sSPN and mSPN activity by RPE and PPE. We
used regression analysis to identify neurons for which activity
could be better accounted for if RPE and/or PPE were included as
regressors. The percentage of sSPNs was higher for both RPE and
PPE (Fig. 5e, Supplementary Fig. 5i). Moreover, reward- and
puff-responsive neurons in striosomes were more strongly
modulated by, respectively, RPE and PPE than those in the
matrix (Fig. 5f). As a result, the relative sSPN-to-mSPN activation
was correlated with RPE (reward neurons: r= 0.77, p < 0.01; no-
reward neurons: r=−0.62, p= 0.06) and PPE (puff neurons:
r= 0.72, p < 0.05; no-puff neurons: r= 0.3, p= n.s.). These
findings suggest that striosomes have sufficient information
about RPE and PPE to provide teaching signals for downstream
circuits.

We also tested whether there were differences in the
proportion of sSPNs and mSPNs with activity related to
action–outcome associations. By regression analysis, we did not
find a difference (Supplementary Fig. 5j–l). This result suggests
that SPNs in both compartments can represent associations
between actions and outcomes. Thus, our findings indicate that
outcome and prediction errors signaling is stronger in sSPNs, but
that responses related to movement per se are similarly detected
in each population.

Outcome decoding reliability is greater for sSPN activity than
for mSPN activity. The single-cell SPN data indicated that sSPNs
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df= 12, two-sided repeated measures t-test, n= 13 mice), puff (sSPNs: 24.9 ± 2.2%, mSPNs: 22.0 ± 2.8%, p= 0.046, t= 2.23, df= 12, n= 13 mice) and
no-puff (sSPNs: 6.1 ± 0.7%, mSPNs: 4.2 ± 0.6%, p= 0.017, t = 2.77, df= 12, n=13 mice) outcomes. There was a trend for no-reward neurons (p= 0.07)
and no difference for action-selective neurons. *p < 0.05. b Regression coefficients of sSPNs (n= 2249) and mSPNs (n= 3582). Their distribution was
significantly different for reward (p= 0.0044) and puff outcomes (p= 0.0091) but not for chosen action (two-sided Kolmogorov–Smirnov test).
c Neuronal activity aligned to maximum wheel acceleration and deceleration during ITIs. Percentage (mean ± SEM) of sSPNs/mSPNs with significant
movement modulation (left), and average responses (mean ± SEM) of modulated neurons, aligned to peak acceleration (right; acceleration:
sSPNs= 7.4 ± 1.1%, mSPNs= 6.7 ± 1.2%; n= 13 mice, two-sided unpaired t-test, p= 0.67, t=−0.43, df= 24; deceleration: sSPNs: 9.9 ± 1.3%, mSPNs:
10.0 ± 1.8%, two-sided unpaired t-test, p= 0.99, t= 0.02, df= 24; n= 13 mice). d Licking during ITIs aligned to detected transients. Panels show
percentage (mean ± SEM) of sSPNs/mSPNs with significantly more activity-triggered licking than expected by chance (left; sSPNs: 20.4 ± 3.7%, mSPNs:
18.6 ± 4.2%; n= 13 mice, two-sided unpaired t-test, p= 0.76, t= 0.31, df= 24, n= 13 mice), and licking aligned to neuronal activity (mean ± SEM) for
significantly modulated neurons (right). e Percentage of sSPNs/mSPNs modulated by RPE (sSPNs: 19.5 ± 2.7% (mean ± SEM), mSPNs: 14.5 ± 2.8%,
p= 0.011, t= 2.98, df= 12, two-sided repeated measures t-test, n= 13 mice) or PPE (sSPNs: 14.2 ± 1.6, mSPNs: 10.4 ± 1.9%, p= 0.039, t= 2.32, df= 12,
n= 13 mice) in the stepwise regression model. *p < 0.05. f RPE/PPE modulation of ΔF/F in reward- or puff-selective sSPNs/mSPNs. Correlation
coefficients were higher for sSPNs than for mSPNs (reward: p= 0.042; puff: p= 0.0089, n= 13 mice, two-sided repeated measures t-test). Right: the
difference between the modulation in the sSPNs and mSPNs was correlated with RPE/PPE in reward (r= 0.77; p < 0.01, n= 13 mice, Pearson correlation)
and puff (r= 0.72; p < 0.05, n= 13 mice) neurons, respectively. Data shown represent mean ± SEM. Source data are provided as a Source Data file.
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exhibited preferential outcome-related activity, but that there was
no clear compartmental difference in encoding of motor beha-
vior. Yet it was still possible that differences between striosome
and matrix compartments in movement-related activity would
emerge when analyzing population activity. We therefore used
decoding analyses to evaluate which task-relevant information
could be read out by downstream structures from the striatal
population activity. We trained artificial neural networks (ANNs)
to classify trials with each of the eight possible action–outcome
combinations. We trained separate models using all SPNs or only
sSPNs or mSPNs (Fig. 6a). We first performed a decoding ana-
lysis using pseudo-trials, constructed by concatenating the activity
of SPNs recorded across all sessions (n= 75 sessions). Pseudo-
trial-based models predicted the action–reward–puff combination
with very high accuracy (Fig. 6b).

Because pseudo-trials can inflate decoding accuracy by
decoupling behavioral and neuronal variability, we also trained
ANNs for individual sessions. There were 47 sessions in which all
of the 8 trial combinations (chosen action × reward × puff)
occurred more than 20 times. For these sessions, we randomly
sampled 8 × 20 trials for decoding analysis. We could accurately
decode the action–outcome combination in 49% of the trials
(chance level with 8 categories: 12.5%) using the activity of all
SPNs within a session (n= 77.75 ± 4.16 neurons, 47 sessions;
Fig. 6c), and 43% and 37%, respectively, using matching numbers
of sSPNs and mSPNs (n= 28.68 ± 1.82 neurons, 47 sessions;
Supplementary Fig. 6a, b). We quantified the percentage of trials
in which the chosen action, the reward outcome or the puff
outcome was misclassified (Fig. 6c–e). As expected, mSPN-based
models had significantly more misclassifications for the reward
(p < 0.001, t= 3.81, df= 46) and puff (p < 0.001, t= 6.51,
df= 46) outcome than sSPN-based models, but there was no
difference for chosen action (Fig. 6e). The higher accuracy for
sSPNs was observed regardless of the total number of transients
that were observed in a session, indicating that differences in
transient rates cannot account for the differential accuracy
(Fig. 6f).

These decoding analyses demonstrate that SPN ensemble
activity contains robust information about action–outcome
contingencies, and they confirm the conclusion based on our
previous analyses (Fig. 5) that the sSPNs that we imaged exhibited
stronger activity in relation to the outcome of actions than did the
mSPNs imaged simultaneously in the same fields of view.

Decoding future actions using SPN activity. Updating of action
values allows agents to adapt their behavior in order to maximize
value. We tested whether the recorded activity contained infor-
mation about future decision-making. Some SPNs responded
differentially depending on whether the mouse was going to stay
with its action or switch in the next trial (Fig. 7a). We tested for
switch/stay encoding in single neurons by chi-square analysis.
More SPNs significantly encoded future switching than stay
behavior during the outcome period (sSPNs: p < 0.001, t= 6.21,
df= 12; mSPNs: p < 0.001, t= 5.72, df= 12; Fig. 7b). In agree-
ment with the hypothesis that striosomes are important for cost-
benefit decision-making16,51, we found significantly more sSPNs
than mSPNs encoding future switching selectively in trials with a
combined reward and puff outcome (switch: p < 0.05, t= 2.50,
df= 12; stay: p < 0.05, t= 2.64, df= 12).

We further assessed the representation of future behavior by
regression analyses. First, we identified SPNs encoding reward-
puff-switching information (Fig. 7c). Second, we performed a
time-resolved analysis in which we identified factors predicting
activity for every SPN for every time point (Fig. 7d). In this
analysis, the percentage of neurons with activity representing

future switch/stay behavior was low relative to other factors
throughout the trial and was not significantly different for sSPNs
and mSPNs.

Because we found only weak representations of future switch-
ing in single SPNs, we again used ANNs to test whether ensemble
SPN activity could predict future switching. Some trial types were
extremely rare (e.g., no reward–puff–stay). We included 51 ses-
sions that had at least 5 trials for all of the 8 reward–puff–switch
combinations. Despite the limited samples used for training (32
training trials and 8 test trials), we could decode reward and puff
outcomes and predict future switch/stay behavior with a higher
accuracy than expected by chance, which for 8 categories
corresponds to 12.5% (Fig. 7e, f, Supplementary Fig. 7a, b). The
sSPN model again had lower misclassification rates than the
mSPN model for decoding reward (p < 0.001, t= 4.08, df= 12)
and puff (p < 0.001, t= 6.00, df= 12) outcome.

Finally, we asked whether SPN activity in the 3 s preceding trial
start was predictive of the next action. Models trained with the
pseudo-trial activity of all SPNs predicted future actions with high
accuracy. ANN models trained using single sessions had a lower
accuracy but one still greater than chance (50%; Supplementary
Fig. 7c). Together, these population-decoding analyses demon-
strate that the striatal ensemble activity during outcomes and
before trial start contained information about the future behavior
of the animal.

Discussion
Our findings in mice demonstrate that single projection neurons
in the anterodorsal striatum can represent in their activity asso-
ciations between an action and both rewarding and aversive
outcomes of that action. We observed this action–outcome
encoding by implementing a new bandit task in which mice
learned without explicit cuing or instruction to maximize reward
and simultaneously minimize punishment. In this task, the block
sizes deliberately consisted of relatively few trials so that the
animals continuously adapted their behavior in response to
evolving prediction errors. Within this CBB task context, visually
identified SPNs in striosomes exhibited enhanced encoding of
RPE and PPE, relative to nearby matrix SPNs imaged in the same
field of view. These findings emphasize multiplexed encoding of
action–outcome representations in the striatum and support a
differential function of striosomes in underpinning behavioral
adaptation in environments requiring assessment of cost and
benefit.

We analyzed the Ca++ responses of identified SPNs within an
RL computational framework. In conventional RL models1, the
consequence of an action is usually evaluated by a scalar. Fol-
lowing the concept of RL theories, it is thus tempting to assign the
positive value for good outcomes and the negative value for bad
outcomes by integrating cost and benefit for the evaluative out-
come signal. However, when the animals receive multiple mod-
alities for the outcome (i.e., reward and airpuff), neuronal activity
can represent the outcome value as a single scalar or can repre-
sent the outcomes individually for each modality, as we observed
in our sample of SPNs.

The CBB task developed here was an attempt to resolve this
ambiguity, as was done previously in humans in a task requiring
subjects to maximize monetary rewards and minimize electrical
shocks56. Our findings suggest that in the SPNs imaged, outcomes
were not represented as a single scalar value. Rather, associations
between actions and qualitatively different outcomes were
represented in a multiplexed manner in partially overlapping
populations of SPNs. We divided SPNs for our analysis into
‘value’ and ‘non-value’ neurons, and found approximately equal
numbers of the two. In this task, the outcomes differed both in
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terms of their valence and identity; it remains to be tested whe-
ther different outcomes with the same valence are also repre-
sented in parallel.

It is possible that the neurons responding to rewards and puffs,
or to the absence of both, could signal the overall salience of the
outcome. However, we consider this unlikely. Salience of an
outcome is not selective for an action, whereas outcome activity
often was. Salience also is not specific to the direction of a pre-
diction error. Very large negative or positive RPE/PPE could be
equally salient, but we did not observe SPNs that were active for
both unexpected reward delivery and unexpected reward omis-
sion (or puff delivery/omissions).

For both reward and puff outcome-sensitive neurons, we noted
that there were more neurons responding to negative outcomes
(reward omission and puff delivery). This bias is perhaps related
to the specific imaging location, or to negative events being more
behaviorally relevant, among potential biases; our data could not
be used to directly support either hypothesis.

Because of the extended signaling inherent to Ca++ imaging,
we also were unable to resolve whether the SPN activity during
the decision period reflected the expected outcome or the total
expected value. Nor were we able to analyze subthreshold inhi-
bitory responses: whereas transients can be reliably detected and
are known to be tightly linked to action potential firing, other
types of calcium dynamics, including reductions in intracellular
Ca++, could not reliably be resolved. However, the 2-photon
imaging preparation that we employed had the great advantage of
allowing us to access at a single-cell level the activities of SPNs,
and to visually identify their striosomal and matrix identity for
over 5000 simultaneously imaged sSPNs and mSPNs.

Pioneering work has shown that direct and indirect pathway
neurons (dSPNs and iSPNs) modulate, respectively, approach and
avoidance behavior20,57. Lacking intersectional genetics, we were
not able to examine this critical differential representation of
outcomes by identified dSPNs and iSPNs. What we could do,
however, was to provide a template of information about the
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Fig. 6 Decoding analysis of action–outcome combinations. a Artificial neural network architecture used for behavioral decoding. The hidden layer had the
same size as the input layer. b Accuracy (mean ± SEM) of model using pseudo-trials for all SPNs (n= 5831) and subsampled sSPNs (n= 2249) or mSPNs
(n= 2249). The model including all SPNs had a higher accuracy than the compartment-specific models (all vs. matrix: t= 7.30, p= 1e−12; all vs.
striosomes: t= 4.18, p= 0.000043, n= 100 repetitions, two-sided repeated measures t-test, ***p < 0.001), and the striosome model outperformed the
matrix model (t= 3.4, p= 0.0008) (all SPNs: 96%; sSPNs: 93%; mSPNs: 90%). c Confusion matrix of session-based models showing percentage of trials
with the true and predicted label for each of the 8 different trial types. d Percentage of trials in which 0, 1, 2 or 3 dimensions were incorrectly predicted by
session-based models (mean ± SEM, n= 47). e The models based on sSPN activity significantly outperformed the models based on mSPN activity when
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n= 47) outcome but not chosen action (sSPNs: 33.7 ± 0.9% and mSPNs: 35.0 ± 0.9%, n= 47). The model based on all neurons had an accuracy higher
than the matrix model for all three features (choice: t= 6.46, p= 0.000065; reward: t= 5.45, p= 1e−7; puff: t= 6.16, p= 1e−8; p < 0.001, two-sided
repeated measures t-test, n= 47) and higher than the striosome model for chosen action (t= 3.12, p= 0.002, two-sided repeated measures t-test, n= 47)
and reward (t= 2.86, p= 0.0053, two-sided repeated measures t-test, n= 47), but the performance was not significantly different for puff (***p < 0.001).
f Relationship between the model accuracy and the total number of transients recorded across all imaged neurons per session. Some sessions had a lower
number of transients, due to low activity or a low number of neurons. Sessions on the left of the dashed line were excluded from the decoding analysis.
Source data are provided as a Source Data file.
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attributes of SPNs clustered together in visually identified strio-
some and matrix compartments.

Visual identification of these SPN subtypes is critical, because
genetic models that label striosomes have labeling in the matrix
(false discovery rate: ~25%), label striosomes sparsely (false
negative rate: ~70%) and are highly biased to striosomal neurons

expressing D1 receptors49,58,59. Our model also suffers from this
problem52–54, but has the advantage of labeling the neuropil in
the birthdate-labeled striosomes, which made it possible to
identify visually the striosomal modules with high reliability53.

We also emphasize that the results here were all obtained by
imaging fields in the anterodorsal striatum, including the region
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with a prominent necklace-like crescent of striosomes (AP range:
−0.2 to 1.2 mm, ML range: 1 to 2.4 mm); within this region, we
did not observe noticeable differences between the way actions,
rewards and puff outcomes activated the SPNs, with the caveat
that in most mice the range in which we imaged was smaller and
we could not directly compare lateral and medial regions, thought
to have different encoding properties7,10,60–62. Recordings were
all made from the left hemisphere. We did not detect differences
in the activity related to ipsilateral/contralateral actions (Fig. 2d,
Supplementary Figs. 2e–h, 5a, b); but we do not rule out the
possibility of undetected differences in action–outcome encoding
between the two hemispheres.

sSPNs are considered to be the main source of striatal input to
dopamine-containing neurons of the substantia nigra (SN), with
mSPNs mainly projecting to the non-dopaminergic neurons of
the SN45–47,49,63. This parallel innervation recalls the parallel
network structure of the actor-critic architecture in RL
models4,40–44,64,65. We found that it was in relation to
reinforcement-related factors that the striosomal and matrix
SPNs differed: sSPNs had more pronounced responses to the
reward and puff outcomes of given actions, particularly when
RPE and PPE were high.

Our finding that sSPNs are biased to encode RPE and PPE
expands on the previous reports of the activity of sSPNs and
mSPNs in Pavlovian tasks, wherein striosomal activity dominated
during reward cues but not in the outcome period53,66. In Pav-
lovian tasks, the cues, but not the outcomes, are relevant for
updating value expectations. In bandit tasks, outcomes are critical
for updating action values. In this task implementing costs and
benefits as reinforcers, striosomes and matrix were often co-
active, but striosomal activity dominated when new information
was provided that resulted in behavioral adaptations, either
because of rewarding or aversive consequences. Our findings are
thus important conceptually in distinguishing potentially differ-
ent experimental conditions calling up the activity of striosomes
and matrix, as well as in understanding the physiology of
potential ‘critic’ circuits.

As previously reported67, we also observed tdTomato-positive
neurons in the matrix. It was not possible to compare this
population with the general striosomal population with sufficient
statistical power due to low numbers (32 neurons). This low
percentage partly reflects our sampling strategy, in which we
chose fields-of-view with clearly delineated striosome and matrix
compartments, and the chosen timing of Tamoxifen injection to
result in sparse, but highly reliable, striosomal labeling.

We did not observe stronger responses related to motor
behavior in mSPNs than in sSPNs, as often hypothesized. This
result at first was surprising, but could be due to the selection of
imaged regions relative to innervation by motor cortex and
related cortical regions49,68. This result is, however, aligned with

the view that the striatum is important for learning the value of
actions. We did not observe many neurons that encoded only
detected motor behavior without regard to the outcome.

Our findings point to synergistic, cooperative patterns of
activation of striosomal and matrix pathways. Such synergism
was originally proposed for the D1-expressing direct and D2-
expressing indirect pathways69, and more recent evidence
strongly aligns itself with this view of the direct–indirect pathway
control system70,71. We suggest that not only the direct–indirect
axis of striatal organization, but also the striosome–matrix axis,
likely exhibit both synergistic and opposing activity patterns
depending on the environmental contingencies requiring adaptive
behavioral response.

We draw two central conclusions from this work. First, many
outcome-related SPN activities in the anterodorsal striatum could
not be readily accounted for by a value-coding scheme. Instead,
the activities are capable of representing multiple independent
action–outcome contingencies, indicating a multiplex coding
framework. Second, striosomes and their nearby surrounding
matrix exhibit marked differences in their representations of
outcomes, with striosomes biased toward responding in relation
to information that is critical for learning processes. These find-
ings provide a window into how the striatum and its compart-
mental divisions contribute to adaptive behaviors guided by
rewards and punishments in uncertain environments.

Methods
Experimental model and subjects. All experimental procedures performed on
mice were approved by the Massachusetts Institute of Technology Committee
on Animal Care. We used 13 Mash1-CreER (het) × Ai14 (het) mice for recording
striatal activity, which were offspring of female Mash1-CreER (het) × Ai14 (homo)
mice crossed with male C57Bl/6J mice. The female transgenic mice were from a
colony that were generated by crossing Mash1(Ascl1)-CreER mice72

(Ascl1tm1.1(Cre/ERT2)Jejo/J, Jackson Laboratory) with Ai14-tdTomato Cre-
dependent mice73 (B6;129S6-Gt(ROSA)26Sor, Jackson Laboratory), which were
then crossed with FVB mice to improve breeding results. To generate mice with
striosome labeling, we timed the breeding. We paired one male C57Bl/6J mouse
with 2 female Mash1-CreER × Ai14 mice. Labeling was induced by injecting
pregnant dams with Tamoxifen, dissolved in corn oil, by oral gavage (100 mg/kg) at
embryonic day 11.553,54. By this method, Mash1 is expressed predominantly in
future striosomal neurons.

We studied 6–10-week-old mice of both sexes (9 females and 4 males). Mice
were housed singly after the first surgery.

Virus injections and surgery. We prepared mice for behavioral training and
2-photon Ca++ imaging using previously described procedures53. Virus was
injected in the striatum of adult mice to express GCaMP6s using aseptic stereotaxic
surgery, with mice deeply anesthetized by 3% isoflurane and mounted in a ste-
reotaxic frame. Anesthesia was maintained with constant 1–2% isoflurane, adjusted
as needed. Meloxicam (1 mg/kg) and slow-release buprenorphine (1 mg/kg) were
given subcutaneously to provide analgesia. The head was shaved and cleaned with
depilatory cream (Nair), and surgical areas were disinfected with three alternating
applications of povidone-iodine and 70% ethanol. The skin was incised to expose
the skull, and the head was leveled to align bregma and lambda in the z-axis. Two

Fig. 7 Neuronal representations of future switch/stay behavior. a Two examples of neurons showing activity in relation to upcoming switch/stay
behavior in reward/puff trials. Top: average activity in trials with different reward–puff outcome combinations. Middle: raster plots of all reward–puff trials
followed by the same action or the opposite action (above or below the red line, respectively). Bottom: average activity of the neurons in reward–puff trials
followed by staying (solid) or switching (dashed). b Percentage (mean ± SEM) of neurons that significantly differentiated future staying or switching in
trials with different outcome combinations (n= 13 mice). In reward–puff trials, significantly more sSPNs were active in relation to future stay and switch
behavior (switch: p= 0.028, t= 2.50, df= 12, n= 13; stay: p= 0.022, t= 2.64, df= 12, n = 13, two-sided repeated measures t-test). *p < 0.05. c Activity
of all neurons showing switch/stay selectivity, averaged per trial type (reward × puff × switch/stay). d Time-resolved stepwise regression model showing
the average percentage of neurons per mouse that had individual factors included in that timepoint-specific model. Blue shading indicates time points with
a significant difference in the percentage of sSPNs and mSPNs (p < 0.05, two-sided paired t-test, n= 13 mice). Data shown represent mean ± SEM.
e Confusion matrix for decoding of reward-puff-switch/stay trials in a pseudo-trial analysis. f The sSPN and combined models outperformed the mSPN
model when decoding reward (misclassifications: sSPNs: 3.4 ± 0.7% (mean ± SEM), mSPNs: 7.8 ± 0.9%, t= 5.04, p= 0.00070, two-sided repeated
measures t-test, n= 10) or puff (sSPNs: 15.6 ± 1.2%, mSPNs: 27.6 ± 1.6%, t= 5.54, p= 0.00036, two-sided repeated measures t-test, n= 10) outcome but
not switch/stay behavior. ***p < 0.001. There were no differences between the sSPN and combined models. Source data are provided as a Source Data file.
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burr holes were drilled in the skull, and 500 nl of AAV5-hSyn-GCaMP6s-WPRE-
SV40 virus was injected through each opening made at the following coordinates
defined relative to bregma: 1) 0.1 mm anterior, 1.9 mm lateral, 2.7 mm ventral; and
2) 0.9 mm anterior, 1.7 mm lateral, and 2.5 mm ventral. Injections were made over
10 min, and the needle was left in place for another 10 min. The incision was
sutured shut, and mice were kept warm while they recovered from the surgery. Wet
food and meloxicam were provided for 3 days to facilitate post-surgical recovery.

Mice were surgically implanted with an imaging cannula at 10–14 days after
virus injection. The imaging cannula was assembled by adhering a 2.7 mm glass
coverslip to the end of a custom stainless-steel metal tube that was adapted to
provide extra stability (1.7 mm long, 2.7 mm diameter eMachineshop; 3D design
available at request). Mice were water-restricted for a week before the cannula
surgery, which significantly improved the clarity of the preparation74. Mice were
deeply anesthetized with isoflurane and head-fixed in the stereotaxic setup. Bregma
and lambda were aligned in the z-axis, and craniotomy coordinates were marked at
0.6 mm anterior and 2.1 mm lateral to bregma. The skull was tilted and rolled by 5°
to make it more horizontal at the cannula implant site. A trephine dental drill was
used to make a 2.7 mm diameter craniotomy. The cortical tissue was aspirated with
gentle suction under constant perfusion with sterile 0.01M phosphate buffered
saline until the underlying white matter appeared. A small layer of the white matter
was removed and covered with a thin layer of Kwik-Sil (World Precision
Instruments) before inserting the cannula into the cavity. The cannula, as well as a
custom head plate, was attached to the skull using Metabond (Parkell). Pre- and
post-surgical analgesia regimen and care were as described above for the virus
surgery.

Behavioral apparatus and task training. The behavioral rig was constructed from
optical hardware (Thorlabs) and custom 3D-printed parts (designs available upon
request). Mice were head-fixed with their forepaws resting on a Lego wheel, which
they could rotate freely, and they reported their decisions by rotating the wheel left
or right. The wheel was coupled to a rotary encoder, allowing us to register its
rotations with high temporal resolution. The rotary encoder was connected to a
microcontroller (Arduino), which ran a custom routine that sampled the position
of the rotary encoder every 10 ms. In the event of a movement, the microcontroller
sent a timestamp and the amount of movement to a behavioral control computer.
The behavioral task was implemented with custom software written in MATLAB
(MathWorks) using the Data Acquisition toolbox. Water rewards (3–7 µl, depen-
dent on the behavior of the individual mice) were delivered through a tube by
opening a solenoid value for a calibrated period. Air puffs (20 psi) were delivered
through a tube positioned on the snout and were similarly controlled with a
solenoid valve. Both solenoid valves were located outside the imaging setup.
Licking was measure via a conductance-based method75.

We trained mice through successive stages of shaping in order to implement the
final task. Mice were water-restricted for at least one week after recovering from the
surgery and received ~1 ml of water per day. If mice did not earn their water
allotment during the task, they were given hydrogel (Clear H2O) in their home
cage. Mice were first habituated to head-fixation and trained to lick the water tube
to receive water rewards. When mice licked reliably, training started. Trial start was
signaled with an auditory tone (4 kHz), after which mice had 3 s to move the wheel
by 15° in either direction for it to count as a response. An ITI of 3.5 s was used
between trials. To initiate a trial, mice had to hold the wheel still for 2 s. If wheel
movement exceeded 5° in either direction during this time, then an additional 1 s
was added to the delay. In the first stage of training, movements to either direction
resulted in water reward delivery and no air puff. Reward was delivered when a
complete response was registered and signaled with an auditory tone (10 kHz).
When mice made responses in at least 150 trials on consecutive days, they moved
on to the next training stage, in which only one action (turning the wheel to the
right or left direction) was paired with a reward, with contingencies changing after
6–15 rewarded trials. Mice progressed to the next stage of training when they made
complete responses in at least 80% of trials, performed ~200 trials, and showed
minimal signs of side bias. In the next stage, air puffs were introduced. In every
block, one action was associated with a puff with 100% probability. When mice
avoided 6–15 puffs by choosing the action that was not paired with the air puff, the
action–air puff contingency switched. Mice progressed to the final task after
reaching the same criteria as above.

In the final task, each action was probabilistically (80%) associated with a water
reward and an air puff outcome in blocks of trials. For example, in a right puff
block, left and right actions were punished with a 0% and 80% probability,
respectively. Reward block transition occurred after 6–15 rewards were delivered
(chosen randomly for each block). Similarly, puff blocks transitioned after mice
avoided 6–15 puffs by selecting the action not associated with puff. Hence, reward
and puff block transitions occurred independently so that in some trials the same
action was associated with 80% reward and puff probability and in some trials the
opposite actions. At the beginning of each session (i.e., the first reward and puff
blocks), reward and puff outcomes were independently assigned to one action. At
block transitions, the sides associated with reward or puff were switched.

Once mice made responses in at least 150 trials, had no bias and showed clear
switch/stay behavior dependent on reward and puff outcomes, they were moved to
a behavioral rig under a 2-photon microscope. In most cases, moving from the
previous behavioral setup required training the mice for additional 2–7 days until

they reached the performance criterion again. The training duration was between
6 weeks and 3 months, with a clear dependence on initial starting age.

Imaging. Two-photon Ca++ imaging procedures were as described previously53.
Briefly, GCaMP6s and tdTomato fluorescence was imaged through a LUMPlan FL,
×40, 0.8NA objective using galvo-galvo scanning with a Prairie Ultima IV 2-photon
microscopy system (Bruker). Excitation light at 910 nm was provided by a tunable
Ti:Sapphire laser equipped with dispersion compensation (Mai Tai Deep See,
Spectra-Physics). Green and red fluorescence emission signals were split with a
dichroic mirror (Semrock) and directed to GaAsP photomultiplier tubes (Hama-
matsu). Images were acquired at a frame rate of 5 Hz. Laser power at the sample
ranged from 11 to 42 mW, depending on the imaging depth and level of GCaMP6s
expression. We selected fields of view (FOVs) that allowed simultaneous imaging of
striosomal and matrix neurons. The FOVs had both clearly labeled GCaMP6s-
expressing cells in striosomes, as defined by dense tdTomato signal in the neuropil,
as well as in areas free of tdTomato labeling. Cells were classified as striosomal or
matrix depending on whether they were found inside the tdTomato-expressing
neuropil zones. In total, we imaged 75 FOVs in 13 mice.

Image processing
Realignment. We motion-corrected imaging videos by realigning all images to an
average reference frame. We first realigned all images in the red stationary channel
to the average of all frames in that channel using 2-dimensional cross-correlation
(template matching and slice alignment plugin)76. Next, we realigned the images in
the green channel on the basis of the frame-by-frame translations that were cal-
culated for the red channel. We previously found that this procedure does not
differentially affect the registration of striosomes and matrix53.

Detection of regions of interest and extraction of ΔF/F. After registration, we
detected neurons manually based on the mean, standard deviation and maximum
projections. Custom MATLAB scripts were used to calculate local background
fluorescence surrounding the somatic regions of interest. The background fluor-
escence, multiplied by 0.7, was subtracted from the somatic signals, as described
previously77. After this, the baseline fluorescence for all neurons (F0) was calculated
using K-means (KS)-density clustering to estimate the mode of the fluorescence
distribution. ΔF/F was calculated as ΔF/F= (Ft–F0)/F0.

Detection of striosomes. Striosomes were visually identified in the plane imaged as
regions with dense labeling of tdTomato in the neuropil. We did not record in
regions with tdTomato-positive neurons but no clear labeling in the striosomal
neuropil. Every cell was classified as striosomal or matrix on the basis of its location
in the visually identified compartments. tdTomato-positive neurons outside of the
striosomes were included in the striosomal population (32 out of 296 tdTomato-
labeled neurons), based on observation that there are neurons in the matrix67 that
have some characteristics in common with those of striosomes. Including these
neurons or not did not affect our results. In total, 5831 neurons were recorded, of
which 2249 neurons were classified as striosomal.

Detection of transients. We used a custom algorithm for detecting Ca++ transient
onsets in the Z-scored ΔF/F. Transients were scored if they met several criteria.
First, the size had to be at least 5 times the standard deviation higher than the
median ΔF/F. The derivative of the signal also had to exceed the standard devia-
tion, which resulted in detecting onsets. In addition, the mean ΔF/F signal in the
1-s period following the onset, subtracted by the signal in a 0.6-s window before the
onset, had to be bigger than 2 times the standard deviation. After this, in cases
where multiple sequential time samples had detected transients, we only kept the
first as the event onset. This simple algorithm efficiently detected events (Supple-
mentary Fig. 2a).

Behavioral modeling
Cost–benefit RL model. We adapted existing RL models1,78 to include both
rewarding and aversive outcomes. We formulated two models. In the first, Q-values
for reward and punishment are learned in parallel, and during the decision both are
integrated. In the second, there is one set of Q-values, based on the weighed value
of an outcome.

Parallel RL model: The inferred expectations about reward and puff outcomes
linked to actions were modeled using two sets of Q-values, one set for reward and
one for puffs. In every trial, the decision was modeled using a sigmoid function
based on the relative Q-values for reward and the relative Q-values for puff. The
sensitivity of the mouse to these differences was parameterized by βrew and βpuff. A
bias term β0 was also included. After observing the outcomes, the Q-values for both
reward and puff were updated in parallel, using the same rules as in existing models
based on reward only. RPE and PPE were calculated by comparing the outcome
with the expected value of the chosen action. Q-values were updated for both the
chosen and the unchosen action. A total of 2 × 3 different learning rates was
applied (chosen action followed by outcome: αrew/puff; chosen action, no reward/
puff delivered αunrew/nopuff; non-chosen action: γrew/puff). Bayesian information
criterion analysis showed that including all six learning rates improved the model.
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One model was created for every mouse. The model was fit using the
fminsearch function in MATLAB. Performance was evaluated using 5-fold cross
validation.

Integrated RL model: This model is similar to the two set model, but only one
set of Q-values is learned. After every trial, the reward and puff outcomes are
combined into one outcome value.

The prediction error is then calculated using this value. Next, the single set of
Q-values is updated and used to make a decision in the next trial.

Auto-regressive behavioral model. We used an autoregressive model to quantify
how strongly rewards, puff and actions impact future decision-making (Eq. (8);
Fig. 1g). We fit a model in which we predicted actions in trial i with the five
previous trials (lagging by j). There were eight sets of predictors. For both left and
right (subscript l/r), there were N (no reward and no puff), R (reward, no puff), P
(puff, no reward) and B (both reward and puff). For every trial, one of these was
scored as 1 if that particular combination occurred, and the other 7 were scored as
0. A bias term β0 was also included. The model was fit for every mouse using the
glmfit function in MATLAB. Performance was evaluated using 5-fold cross vali-
dation.

YðiÞ ¼ ∑
n

j¼1
βNo reward=puffj ðNrði� jÞ � Nlði� jÞÞ

þ ∑
n

j¼1
βRewardj ðRrði� jÞ � Rlði� jÞÞ

þ ∑
n

j¼1
βPuffj ðPrði� jÞ � Plði� jÞÞ

þ ∑
n

j¼1
βBothj ðBrði� jÞ � Blði� jÞÞ þ β0

PRðiÞ ¼ 1
1þ e�YðiÞ

PLðiÞ ¼1� PRðiÞ

ð8Þ

Analysis of single-neuron activity
Analysis of action, reward and puff encoding. To identify neurons that were
selective for chosen action, reward or puff outcomes, we used two approaches.
First, we used chi-square analysis to test for selectivity by comparing the number of
trials with at least one Ca++ transient across two conditions (e.g., left vs. right
action). To find neurons that were active in relation to multiple features, we per-
formed sequential chi-square tests. First, we tested the individual factors (left vs.
right, reward vs. no reward, puff vs. no puff). In neurons that had activity selective
for a particular trial type, we then took only these trials, split them again for
another factor and ran another chi-square test. Sequential statistical testing is
conservative as neurons have to repeatedly pass a statistical criterion. We therefore
used a regression as second approach to identify neurons representing actions,
outcomes and combinations of these.

We also used a stepwise logistic regression analysis to define neuron types. In
these analyses, we selected a number of predictors and then searched for the
optimal model for every neuron to predict whether it has a transient in a given trial
or not. In every iteration, the effect of adding or removing every possible factor
from the model was evaluated. The change that resulted in the largest explanatory
power of the model was selected if adding/removing a factor significantly improved
the performance of the model. The null hypothesis for the statistical test was that
the coefficient of that factor had a coefficient of zero if it would be included in the
model. The p-value that was used for cutoff was 0.05. For this analysis, we used the
stepwiseglm function in MATLAB.

Partial regression analysis was performed to confirm the effect of adding
prediction errors to the models that explain neuronal activity on the basis of trial
outcomes. For reward, puff and combined outcomes, we first performed regression
of the neurons’ activity against, for example, reward. We then regressed RPE
against reward, and then finally we regressed the residuals from the first regression
against the residuals from the second regression. Then the number of neurons in
which this last regression was significant was determined to quantify the ability of
RPE, PPE, and combined PE to predict neuronal activity.

We performed logistic regression analysis for every neuron to quantify the
strength of the relationship between chosen action, reward outcome and puff
outcome with the probability of having a transient in a trial. To avoid overfitting,
we used L2 regularization.

In all cases, we first calculated the mean per mice and performed statistics on
these data. Therefore n= 13 mice for all analyses except stated otherwise.

RPE and PPE representations. We analyzed whether neuronal activity in reward/
no-reward or puff/no-puff neurons was modulated by RPE and PPE. We used the
RL model to infer prediction errors for every trial and then binned these. We then
calculated for the different neuronal populations the amplitude of the transients in
Z-scored ΔF/F. To test whether neuronal activity was modulated by the prediction
errors, we performed correlation analyses. This was done for all trials and also only
including the trials with the outcome that the neurons encoded. Statistics were
done on the mean activities per mouse (n= 13).

Comparing direction selectivity for action–reward and action–puff associations. To
test the hypothesis that neurons encode outcome with opposite valence for dif-
ferent actions, we compared the direction selectivity for rewarding and aversive
outcomes. First, we used a chi-square test to find neurons that were selective for
specific action × reward and action × puff combinations. We then determined the
joint distribution of action × reward and action × puff selective neurons.

Selectivity analysis. We compared the selectivity of reward and puff activity in the
neurons that were selectively active for both reward and puff outcomes. For this
comparison, we calculated for every neuron the proportion of reward/no-reward/
puff/no-puff trials in which transients occurred. The selectivity index for reward
was calculated by dividing this proportion for trials with a reward by the sum of the
proportions of trials with a reward and trials without a reward, resulting in values
between 0 and 1, where 1 means that all transients occur in trials with a reward and
0 means that all transients occur in trials without a reward. We did the same for
puff selectivity. We transformed these data by subtracting 0.5 and multiplying the
outcome by 2 to have a range of −1 to 1, with 0 meaning that transients are as
likely to occur in trials with or without the outcome.

Wheel movement and licking analysis. We tested how neurons represented wheel
movements and licking during the task and in ITIs. Wheel movement and licking
data were first binned at 5 Hz to facilitate comparison with the GCaMP6s neuronal
signals. For detecting wheel movement bouts, we first smoothed the absolute value
of the whole-session movement trace using a 7-point moving average. This
facilitated detecting events preceded by ~1 s of no movement. The resulting trace
was baseline adjusted using the ksdensity function in MATLAB and binarized
using a wheel movement threshold of 0.44°. Event onset and offset times were
determined as timepoints at which the binarized movement trace shifted from 0 to
1 and from 1 to 0, respectively. The smoothing introduced a lag of 2 time bins,
which was corrected in the onset/offset times. This analysis detects all movement
bouts occurring during the session. To restrict analysis to movements occurring
during the ITI, we removed all bouts with onset or offset occurring during a 3-s
period from trial start, as well as bouts that had a trial occurring in the middle of
them. Individual bouts were labeled as leftward or rightward based on the mean
direction of movement. Neuronal data were aligned to time of peak acceleration or
deceleration of the wheel within movement bouts. For peak acceleration analysis,
significance was determined by comparing the number of movement bouts with
neuronal transients occurring in a 1-s window before or after the maximum
acceleration using a chi-square test. Significance testing for deceleration was done
similarly, except that activity occurring between 0.4 s before and 0.6 s after peak
deceleration was compared to a preceding 1-s baseline period.

We performed two types of licking analysis. First, we determined how often
licking was coincident with neuronal activity during the ITI period. For each
neuron, we generated a peri-stimulus time histogram over a 4-s window by aligning
licks to the time of detected neuronal transients. Licks occurring during 3 s after
trial start were not counted. Only neurons with at least 10 transients during the
session were included in this analysis. We used a shuffle test to generate a null
distribution of licking expected by chance. We realigned licking on random
permutations of neuronal transient times. This process was repeated 100 times. The
total number of licks computed from the observed data was compared to the
resulting null distribution. Neurons with observed values outside of the center 95%
of the null distribution were considered significant. In a second analysis, we
detected licking bouts using a procedure similar to that described for the wheel
movements above, with a few differences. The whole-session licking trace was
smoothed with a 5-point moving average, and binarization was performed with a
lick threshold of 0.2. No baseline adjustment was necessary. For whole-session
analysis, neuronal activity was aligned to times of lick bout onsets. For the ITI
analysis, only licking bouts occurring outside of trials were used, as described
above. Significance testing for both analyses was done by comparing the 1-s pre-
licking and 1-s post-licking periods using a chi-square test. For both wheel
movement and licking analysis, data from all neurons for individual mice were
concatenated together, and the reported values were based on number of mice.

Decoding analysis. We used artificial neural networks to decode behavior from
the neuronal activity. This approach resulted in higher accuracy than support
vector machines or logistic regression, and it allowed us to decode multiple classes
in one analysis without having to create multiple one-versus-rest models. The
models consisted of three layers. The input layer used the activity of every neuron.
The hidden layer was the same size as the input layer and used ReLU activation
functions. The output layer had one node per target and used a softmax function to
calculate a probability distribution. We used the Adam optimizer and a learning
rate of 0.001, and trained the network in 100 epochs. Dropout (0.3) was used to
prevent overfitting. Parameters were chosen on the basis of a grid search.

We created models that were based on pseudo-trials and models in which only
activity from single sessions was included. We created pseudo-trials by selecting
from every neuron a fixed number of trials for each target and concatenated across
neurons. The number of trials was set separately for the different analysis based on
how often trials typically occurred. In the decoding of trial state (action and both
outcomes), we used 20 trials resulting in 47 sessions in which all of the 8 trial
combinations (chosen action × reward × puff) had more than 20 trials. The other
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sessions, in which certain combinations did not occur often enough, were excluded.
For reward × puff × switch/stay decoding, we used 5 trials per trial type, which was
the minimum for 5-fold cross validation and resulted in 51 sessions. For decoding
left/right actions based on ITI activity, we included 85 trials, so that all sessions
could be included. The pseudo-trial analysis was performed 100 times, every time
taking different trials from the sessions.

Pseudo-trials have the advantage that one can combine neurons from different
sessions, which increases the predictive power of the model. However, the number
of trials has to be restricted to ensure enough trial samples from all, or most,
neurons. In addition, pseudo-trials decouple behavioral and neuronal variability.
Therefore, we also created models for each session using the same parameters as
described above. To compare striosomal and matrix populations, we always took
the same number of neurons from every session. The largest population was
therefore subsampled. This procedure was repeated 40 times for each analysis.

The models were implemented using TensorFlow in Python 3. Other libraries
used were NumPy, SciPy, and Pandas.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data for all figures are provided with this paper. Data have not been deposited in
an online repository since we did not find a data repository with a standard that is widely
adopted by the research community for these data types. Requests for additional data can
be directed to the corresponding author and will be attempted to be handled within two
weeks. Source data are provided with this paper.

Code availability
Code for fitting the cost–benefit reinforcement learning model has been deposited on
GitHub (https://github.com/bloemb/CBC_RL_model). Custom code used in this study is
available from the corresponding author upon reasonable request.
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Supplementary Fig. 1 Effect of cannula implantation on behavioral performance. a Number of 

sessions that was required to progress through all training stages, as described in Methods (mean 

± SEM, n = 10 control mice and 12 mice with cannula). b Average number of trials performed in 

the last three sessions before reaching the final performance criterion (mean ± SEM, control: n = 

30, cannula: n = 36). c Average response time in the last three sessions before reaching criterion 

(mean ± SEM, control: n = 30, cannula: n = 36). d Average bias in the last three sessions before 

reaching criterion (mean ± SEM, control: n = 30, cannula: n = 36). e Average absolute bias in the 

last three sessions before reaching criterion (mean ± SEM, control: n = 30, cannula: n = 36). Source 

data are provided as a Source Data file. 

  



2 
 

 
 



3 
 

Supplementary Fig. 2 Action-outcome association representations by SPNs. a ΔF/F fluorescent 

traces of three sample neurons recorded over 30 min (green) and the time of detected Ca++ 

events (black). b, c  Two examples of neurons showing activity selective for action-reward (b) and 

action-puff (c) combinations. Trials are shown (rows) separately for left/right action, with red 

lines demarcating reward/no-reward or puff/no-puff outcome trials. d The analysis for Fig. 2e 

was repeated, but with half of the trials used for detecting the neuronal response types and the 

other half for calculating the average response in the different trial types. The results confirm the 

validity of the detected neuron types. e Percentage (mean ± SEM) of action-selective neurons 

with selectivity for reward or no-reward outcomes (left: reward = 14.9 ± 2.9%, no reward = 16.8 

± 1.6%; right: reward = 17.2 ± 3.4%, no reward = 25.0 ± 3.9%; n = 13 mice). There were no 

significant main effects or interactions (ANOVA). f Percentage of action-selective neurons with 

selectivity for puff or no-puff trials (left: puff = 16.6 ± 2.7%, no puff = 6.6 ± 1.9%; right: puff = 30.9 

± 4.8%, no puff = 9.7 ± 2.6%; mean ± SEM, n = 13 mice). There were significant main effects of 

puff outcome (p = 0.000024) and choice (p = 0.012; ANOVA). g Percentage of reward-outcome-

selective neurons with selectivity for left or right actions. No significant main or interaction 

effects were detected (mean ± SEM , n = 13 mice). h Percentage of puff-outcome-selective 

neurons that was selective for the two actions. No significant effects were detected (mean ± SEM, 

n = 13 mice). I, j Joint distribution of chosen action and reward (i) or puff (j) regressor coefficients. 

Horizontal and vertical bins were chosen to divide the non-zero coefficients equally among the 

bins. k Comparison of action-outcome related responses in action-outcome selective neurons in 

the first trial after a block switch versus other trials with the same action and outcome (mean ± 

SEM, n = 13 mice, ***p < 0.001). l Two examples of neurons showing activity representing an 

association between an action and both reward and puff outcomes. m The analysis of Fig. 2h 

repeated with half of the trials used for detecting the neuron types and the other half for 

calculating the average responses. Source data are provided as a Source Data file. 
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Supplementary Fig. 3 Activity and selectivity of reward/no-reward/puff/no-puff neurons. a 

Activity (mean ± SEM) of four groups of neurons with activity selective for different outcome 

combinations in reward/no-reward/puff/no-puff trials (n = 13 mice). b Normalized activity of 

neurons with value-like responses across different trial types  (mean ± SEM, n = 13 mice). Neurons 

that were active in trials in which a good outcome was delivered for one action did not have 

enhanced activity when the other action was paired with a bad outcome, or vice versa. For all 4 

types of neurons, ANOVA indicated significant main effects and interactions (p < 0.001). Two-

sided post-hoc t-test showed significance between different trial types for each neuron group 

(Left - no reward - puff neurons: left - no reward - puff trials - left - reward - no puff trials p = 

0.00050; Left - no reward - puff neurons: left - no reward - puff trials - right - no reward - puff 

trials p = 0.025; Left - no reward - puff neurons: left - no reward - puff trials - right - reward - no 

puff trials p = 0.041; Left - no reward - puff neurons: left - reward - no puff trials - right - no reward 

- puff trials p = 1e−06; Left - no reward - puff neurons: left - reward - no puff trials - right - reward 

- no puff trials p = 1e−07; Left - reward - no puff neurons: left - no reward - puff trials - left - 
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reward - no puff trials p = 1e−09; Left - reward - no puff neurons: left - no reward - puff trials - 

right - no reward - puff trials p = 1e−07; Left - reward - no puff neurons: left - no reward - puff 

trials - right - reward - no puff trials p = 1e−09; Left - reward - no puff neurons: left - reward - no 

puff trials - right - no reward - puff trials p = 0.0064; Left - reward - no puff neurons: left - reward 

- no puff trials - right - reward - no puff trials p = 0.0078; Left - reward - no puff neurons: right - 

no reward - puff trials - right - reward - no puff trials p = 0.00036; Right - no reward - puff neurons: 

left - no reward - puff trials - right - reward - no puff trials p = 0.00023; Right - no reward - puff 

neurons: left - reward - no puff trials - right - reward - no puff trials p = 0.000055; Right - no 

reward - puff neurons: right - no reward - puff trials - right - reward - no puff trials p = 0.00067; 

Right - reward - no puff neurons: left - no reward - puff trials - left - reward - no puff trials p = 

0.00075; Right - reward - no puff neurons: left - no reward - puff trials - right - no reward - puff 

trials p = 0.000018; Right - reward - no puff neurons: left - no reward - puff trials - right - reward 

- no puff trials p = 0.00045; Right - reward - no puff neurons: left - reward - no puff trials - right - 

no reward - puff trials p = 1e−05; Right - reward - no puff neurons: right - no reward - puff trials - 

right - reward - no puff trials p = 1e−05, *p < 0.05; **p < 0.01; ***p < 0.001). Source data are 

provided as a Source Data file. 
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Supplementary Fig. 4 Comparison of cost-benefit reinforcement learning models. a Model 

accuracy of the parallel and integrated cost-benefit RL models during cross validation (mean ± 

SEM, n = 13 mice). b Cross validation accuracy of alternative simpler models. ‘RL alpha = 1’: a win-

stay/lose-switch model was created by setting all learning rates to 1. ‘RL same parameters for 

reward/puff’: one set of learning parameters for both outcomes. ‘RL 1 decay rate’: there was a 

single decay rate for both reward and puff. ‘RL 2 learning rates: the forgetting rate was set to be 

the same as the unlearning rate (Ito & Doya, 2009). ‘RL 1 learning rate: only 1 learning rate was 
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used for each outcome. ‘Regression’: performance of a 5 trial back auto-regressive model. Data 

shown are mean ± SEM (n = 13 mice for the RL models and n = 75 sessions for the regression 

model). c A stepwise regression was conducted for each neuron to test which factors best 

account for the recorded activity. The percentage of neurons that include the factors from the 

two competing cost-benefit RL models was higher for the parallel model (reward outcome vs. 

combined outcome: p = 0.011; puff outcome vs. combined outcome: p = 0.022; RPE vs. combined 

PE: p = 0.048; PPE vs. combined PE: p = 0.035; *p < 0.05, average and SEM of 13 mice; two-sided 

paired t-test). d Partial regression analysis was performed to confirm the results shown in c and 

to quantify the effect of adding prediction errors to models that explain neuronal activity on the 

basis of outcome. For reward, puff and combined outcomes, we first performed regression of the 

neurons’ activity against, for example, reward. We then regressed RPE against reward, and then 

finally we regressed the residuals from the first regression against the residuals from the second 

regression (mean ± SEM, n = 13, ***p < 0.001). e The analysis in c was repeated with only neurons 

that responded to combinations of reward and puff outcomes, and split into ‘value’ and ‘non-

value’ neurons depending on whether they responded oppositely to reward and puff outcomes 

or not (**p < 0.001). Source data are provided as a Source Data file. 
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Supplementary Fig. 5 Movement-related activity in sSPNs and mSPNs. a sSPN (red) and mSPN 

(black/gray) activity was aligned to peak acceleration of the absolute value of wheel movement 

bouts. Panels show average (± SEM) movements across mice (left), mean proportion (± SEM) of 

neurons with significant increase in movement-related activity (middle), and mean (± SEM) 

activity of significantly modulated neurons (right: sSPNs = 7.4 ± 1.1%, mSPNs = 6.7 ± 1.2%; n = 13 

mice, two-sided unpaired t-test, p = 0.67, t = −0.43, df = 24). b, c Similar to a, except movements 

were divided into left (b, sSPNs = 4.6 ± 1.1%, mSPNs = 3.6 ± 0.8%; n = 13 mice, two-sided unpaired 

t-test, p = 0.47, t = −0.73, df = 24) and right (c, sSPNs =  2.7 ± 0.8%, mSPNs = 2.5 ± 0.6%; n = 13 

mice, two-sided unpaired t-test, p = 0.81, t = −0.24, df = 24). Data are shown as mean ± SEM. d 

Similar to a, except activity was aligned to peak deceleration within wheel movement bouts 

(sSPNs: 9.9 ± 1.3%, mSPNs: 10.0 ± 1.8%; n = 13 mice, two-sided unpaired t-test, p = 0.99, t = 0.02, 

df = 24). Data are shown as mean ± SEM. e, f Similar to b and c, except with activity aligned to 

peak decelaration for left (e, sSPNs = 5.9 ± 1.1%, mSPNS = 5.9 ± 1.2%; n = 13 mice, two-sided 

unpaired t-test, p = 0.99, t = 0.01, df = 24) and right (f, sSPNs = 4.1 ± 0.8%, mSPNs = 3.4 ± 0.7%; n 

= 13 mice, two-sided unpaired t-test, p = 0.53, t = −0.63, df = 24) movements. Data are shown as 

mean ± SEM. g Neuronal activity (mean ±SEM)  aligned to licking bout onset during ITI (sSPNs: 

4.7 ± 0.9%, mSPNs: 3.7 ± 1.3; n = 13 mice, two-sided unpaired t-test, p = 0.53, t = −0.63, df = 24). 

h Same as g, except for licking bouts occurring during the whole session (sSPNs: 22.1 ± 3.6%, 

mSPNs: 22.0 ± 3.0%; n = 13 mice, two-sided unpaired t-test, p = 0.98, t = −0.02, df = 24). Data are 

shown as mean ± SEM.  i Percentage (mean ± SEM) of sSPNs (red) and mSPNs (black/gray) per 

mouse that included the chosen action, reward and puff outcomes, their interaction, and RPE 

and PPE in the optimal model using stepwise regression. Significantly more sSPNs included RPE 

(p = 0.011, t = 2.98, df = 12), puff outcome (p = 0.049, t = 2.19, df = 12), PPE (p = 0.039, t = 2.32, 

df = 12) and reward x interaction (p = 0.030, t = 2.45, df = 12) in their optimal model (two-sided 

repeated measures t-test, n = 13, *p < 0.05, n = 13 mice). j Summary of stepwise regression 

showing average percentage of sSPNs and mSPNs per mouse with single action and outcome 

factors included in their optimal model, as well as different two-way and three-way interactions 

(mean ± SEM, n = 13). k, l Percentage of sSPNs and mSPNs with various two-way (k) and three-

way (l) interactions included in their optimal regression model. There are no significant 
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differences in any of the comparisons (mean ± SEM, p > 0.05, n = 13 mice, two-sided repeated 

measures t-test). Source data are provided as a Source Data file. 
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Supplementary Fig. 6 Decoding action and outcome combinations with striatal activity. 

Confusion matrices for striosomal (a) and matrix (b) decoding of action – reward outcome – puff 

outcome combinations using single session models. 
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Supplementary Fig. 7 Decoding future behavior with striatal activity. a, b Decoding of future 

switch/stay behavior and reward and puff outcome in striosomes (a) and matrix (b) using pseudo 

trials. c Accuracy of decoding left/right choices based on ITI activity in the 2 s preceding trial onset 

(*p < 0.05). Decoding accuracy in models based on single sessions was slightly better in a model 

using all neurons than only matrix neurons (mean ± SEM, p = 0.033; t = 2.00, two-sided repeated 

measures t-test, df = 12, n = 13, 100 pseudo trials). Source data are provided as a Source Data 

file. 
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