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Intrinsic neuronal variability significantly limits information encoding in the primary visual cortex (V1). However, under cer-
tain conditions, neurons can respond reliably with highly precise responses to the same visual stimuli from trial to trial. This
suggests that there exists intrinsic neural circuit mechanisms that dynamically modulate the intertrial variability of visual
cortical neurons. Here, we sought to elucidate the role of different inhibitory interneurons (INs) in reliable coding in mouse
V1. To study the interactions between somatostatin-expressing interneurons (SST-INs) and parvalbumin-expressing interneur-
ons (PV-INs), we used a dual-color calcium imaging technique that allowed us to simultaneously monitor these two neural
ensembles while awake mice, of both sexes, passively viewed natural movies. SST neurons were more active during epochs of
reliable pyramidal neuron firing, whereas PV neurons were more active during epochs of unreliable firing. SST neuron activ-
ity lagged that of PV neurons, consistent with a feedback inhibitory SSTfiPV circuit. To dissect the role of this circuit in py-
ramidal neuron activity, we used temporally limited optogenetic activation and inactivation of SST and PV interneurons
during periods of reliable and unreliable pyramidal cell firing. Transient firing of SST neurons increased pyramidal neuron
reliability by actively suppressing PV neurons, a proposal that was supported by a rate-based model of V1 neurons. These
results identify a cooperative functional role for the SSTfiPV circuit in modulating the reliability of pyramidal neuron
activity.
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Significance Statement

Cortical neurons often respond to identical sensory stimuli with large variability. However, under certain conditions, the
same neurons can also respond highly reliably. The circuit mechanisms that contribute to this modulation remain unknown.
Here, we used novel dual-wavelength calcium imaging and temporally selective optical perturbation to identify an inhibitory
neural circuit in visual cortex that can modulate the reliability of pyramidal neurons to naturalistic visual stimuli. Our results,
supported by computational models, suggest that somatostatin interneurons increase pyramidal neuron reliability by sup-
pressing parvalbumin interneurons via the inhibitory SST!PV circuit. These findings reveal a novel role of the SST!PV cir-
cuit in modulating the fidelity of neural coding critical for visual perception.

Introduction
A long-standing aim of systems neuroscience is to relate neural
activity to perception. In visual perception, it has been estab-
lished that a key role of the primary visual cortex (V1) is to trans-
form raw sensory information from the environment into
correlates of a low-level percept (Frégnac and Bathellier, 2015).
Surprisingly, under laboratory conditions, V1 pyramidal neurons
respond to repetitions of identical sensory stimuli with spike
trains that vary greatly in both the number and the timing of
spikes (Tolhurst et al., 1983; Softky and Koch, 1993). Although it
is known that this unreliability limits stimulus selectivity (Kohn
et al., 2016), the impact on perception, and more specifically, vis-
ually guided behavior, remains unknown. Notably, a large part of
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the variability is generated internally within the cortex as the same
neuron can respond either reliably or unreliably under different
conditions (Azouz and Gray, 1999; Averbeck et al., 2006). For
example, increasing the size of the stimulus within the receptive
field (RF) or its statistics from simple (gratings) to complex (natural
scenes) increases reliability (Rikhye and Sur, 2015). Additionally,
arousal or attention decreases variability and increases task perform-
ance (Cohen and Maunsell, 2009; Reimer et al., 2014; Engel et al.,
2016; Minces et al., 2017; Bondy et al., 2018). Collectively, these
findings suggest that mechanisms might exist within the cortex to
modulate response reliability depending on processing demands
(Sprague et al., 2015; Liu et al., 2018). The goal of this study was to
elucidate some of these mechanisms.

Inhibitory neurons (INs) play an important role in control-
ling cortical activity at various temporal and spatial scales
(Isaacson and Scanziani, 2011). Hence, changes in cortical in-
hibition might be a potential mechanism responsible for mod-
ulating response reliability. It has been noted that inhibitory
postsynaptic potentials measured in cortical pyramidal neu-
rons are precisely delayed relative to excitatory potentials dur-
ing epochs of reliable firing (Wehr and Zador, 2003). This
delayed inhibitory input is believed to quench stochastic exci-
tatory inputs by limiting integration to a small window during
which reliable spiking can occur (Haider and McCormick,
2009). Moreover, chronically blocking inhibition sharply
decreases response reliability (Egger et al., 2015; Zhu et al.,
2015). However, given the computational diversity of INs, the
specific role of different IN subtypes in modulating response
reliability remains poorly understood (Tremblay et al., 2016;
Wamsley and Fishell, 2017; Khan and Hofer, 2018; Ferguson
and Cardin, 2020). This study focuses on the two main IN
classes—parvalbumin-expressing INs (PV-INs) and somato-
statin-expressing INs (SST-INs)—which provide distinct in-
hibitory control over pyramidal excitatory (EXC) neurons in
layer 2/3 of mouse V1. PV-INs provide rapid, shunting inhibi-
tion onto the somatic compartment of EXC neurons (Rudy et
al., 2011) and as a consequence are able to powerfully control

the response gain (Atallah et al., 2012; Wilson et al., 2012; Liu
et al., 2018) and spike timing (Pouille and Scanziani, 2001) of
the PV-INs targets. SST-INs, on the other hand, inhibit the
distal dendrites of pyramidal neurons, where they can control
synaptic integration (Murayama et al., 2009; Lovett-Barron et
al., 2012; Chiu et al., 2013; Yang et al., 2016). SST-INs also
receive strong intracortical excitation and have been found to
influence network integration (Adesnik et al., 2012; El-
Boustani et al., 2014; Phillips and Hasenstaub, 2016).
Importantly, these INs do not act independently as SST-INs
also inhibit PV-INs (Cottam et al., 2013; Pfeffer et al., 2013;
Tremblay et al., 2016). Through this inhibitory SST!PV cir-
cuit, SST-INs have the ability to control the inhibitory tone of
both the dendritic and the somatic compartments (Yaeger et
al., 2019), making them ideal candidates to modulate variabili-
ty both at the level of synaptic input and spiking output.
However, little evidence exists to support this hypothesis.

Here, we developed a line of double transgenic mice and used
a multifaceted approach to study how interactions between PV-
and SST-INs contribute to reliable sensory processing in V1.
Using dual-wavelength calcium imaging, we found that SST-INs
were more active during epochs of reliable pyramidal cell firing,
whereas PV-INs were more active during epochs of unreliable
firing. This complementary activity was because of the inhibitory
SST!PV circuit. Using temporally limited optical perturbations,
we found that SST-INs improve reliability by suppressing PV-
INs. Thus, our work identifies a novel mechanism by which PV
and SST-INs work cooperatively, via the SST!PV circuit, to
modulate the fidelity of sensory processing.

Materials and Methods
Experimental animals. All experiments were conducted under proto-

cols approved by the Massachusetts Institute of Technology Committee
on Animal Care and conformed to National Institutes of Health (NIH)
guidelines. The main mouse lines used in this study are provided in
Table 1. All mice were maintained on a C57BL6/J background. Only
mice older than 8weeks, both male and female, were used in this study.

Table 1. Summary of mouse genotypes and viruses used in each experiment

Figure Mouse used The Jackson Laboratory ID Virus used

1 PV-Cre and SST-Cre x Ai14. Stock #008069, https://www.jax.org/strain/008069
Stock #013044, https://www.jax.org/strain/013044
Stock #007908, https://www.jax.org/strain/007908

AAV1.Syn.GCaMP6f.WPRE.SV40

1 PV-Cre and SST-Cre See above AAV1.Syn.Flex.GCaMP6f.WPRE.SV40
2 PV-Flp x SST-Cre Stock #022730, https://www.jax.org/strain/022730 AAV1.Syn.fDIO.GCaMP6f.WPRE.SV40 and AAV1.Syn.Flex.NES.jRGECO1a.WPRE.SV40

(1:2 mixture)
3 PV-Flp x SST-Cre See above AAV-CAG-Flex-ArchT-tdTomato and AAV1.Syn.fDIO.GCaMP6f.WPRE.SV40

(1:2 mixture)
3 PV-Flp x SST-Cre See above AAV1-EF1-dflox-hChR2(H134R)-mCherry.WPRE,

AAV1.Syn.Flex.NES.jRGECO1a.WPRE.SV40,
AAV1.Syn.fDIO.GCaMP6f.WPRE.SV40
(1:1:1 mixture)

4 PV-Cre x Ai32 Stock #012569, https://www.jax.org/strain/012569 AAV1.Syn.GCaMP6f.WPRE.SV40 and
AAV2-CAG-FLEX-tdTomato (1:2 mixture)

4 PV-Flp x SST-Cre See above AAV1-EF1-fDIO-hChR2(H134R)-mCherry.WPRE
AAV1.Syn.Flex.GCaMP6f.WPRE.SV40
(1:2 mixture)

6 SST-Cre x Ai32 See above AAV1.Syn.GCaMP6f.WPRE.SV40 and
AAV2-CAG-FLEX-tdTomato (1:2 mixture)

6 PV-Flp x SST-Cre See above AAV1-EF1-dflox-hChR2(H134R)-mCherry.WPRE,
AAV1.Syn.fDIO.GCaMP6f.WPRE.SV40
(1:2 mixture)

9 PV-Cre x Ai35 Stock #012735, https://www.jax.org/strain/012735 AAV1.Syn.GCaMP6f.WPRE.SV40 and
AAV2-CAG-FLEX-tdTomato (1:2 mixture)
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Mice were housed in the vivarium on a standard 12 h light/dark cycle
with a maximum of five mice in each cage. Experiments were performed
during the light portion of the cycle.

To create SXP mice, we crossed homozygous male SST-Cre mice
with heterozygous female PV-Flp mice. Pups from the first offspring
generation (F1) were genotyped at postnatal day 21 using a commercial
service (Transnetyx), and only pups that expressed Cre and Flp were
selected. Only F1 pups from three breeder lines were used in this study.

To create PV-ChR2, SST-ChR2, and PV-Arch mice, we crossed
homozygous male PV-Cre or SST-Cre with heterozygous female Ai32 or
Ai35 mice. Again, F1 pups were genotyped at postnatal day 21 using a
commercial service (Transnetyx), and only pups that expressed Cre and
GFP, the fluorophore attached to channelrhodopsin-2 (ChR2; or EYFP
in the case of Ai35 mice) were selected. Only F1 pups from six breeder
lines were used in this study.

Surgical procedures. Adult mice (between 8 and 10weeks old) were
anesthetized with 1–2% isoflurane (v/v), and a sterile surgery was per-
formed as described previously (Rikhye and Sur, 2015; Goard et al.,
2016). First, a small circular piece of scalp was excised to expose the
skull. After cleaning and drying the skull using a razor blade and sterile
cotton swabs, a custom-built head post was implanted in the exposed
skull with cyanoacrylate glue (Loctite) and cemented with dental acrylic
mixed with black paint (C&B-Metabond). A craniotomy (3 mm in diam-
eter) was made over the left V1 (2.5 mm lateral and 0.5 mm anterior to
l ). Care was taken not to damage the dura during the craniotomy.

Depending on the experiment, a cocktail of adeno-associated viruses
(AAVs; Table 1) were then injected using a beveled pipette (20–30mm
diameter tip, Drummond Scientific) backfilled with mineral oil at a
speed of 50 nl/min at five to six injections sites. Between 100 and 150 nl
of virus was injected per injection site. After each injection, pipettes were
left in the brain for an additional 5–10min (depending on injection vol-
ume) to prevent backflow and to ensure proper virus spread. Following
virus injections, a chronic imaging window was placed in the craniot-
omy. The imaging window consisted of an inner 3 mm glass window
and an outer 5 mm glass window (Warner Instruments), which were
glued together using optically transparent UV curing glue (Norland
Optical). Once mice recovered from anesthesia, they were returned to
their home cage and were singly housed. Mice were provided with anal-
gesia (meloxicam, 0.1mg per kg of body weight) subcutaneously 3 d
postsurgery. Imaging experiments typically started 14–21d postsurgery
to allow for sufficient viral expression and recovery. Mice with limited
optical access because of bone growth or infection were excluded from
further analysis.

Two-photon imaging. Imaging was performed using a Prairie Ultima
two-photon system (Bruker) driven by two Spectra Physics Mai Tai
lasers, both passed through DeepSee modules (Spectra Physics). Imaging
was performed using a high-performance objective lens (Olympus XL
25� Plan N objective, numerical aperture = 1.05). In most experiments
(except dual-wavelength imaging; see below), we tuned the laser to
965 nm to enable us to optimally visualize both GCaMP6f and tdTomato
fluorescence. To separate red and green fluorescence (Meng et al., 2018),
we used a 570 nm dichroic filter, a 520/50nm green filter, and a 620/
90nm red filter (Chroma). We used a removable curtain made from
blackout material (Thorlabs) and a custom holder to isolate the visual
display from the microscope.

In dual-wavelength imaging experiments, we tuned one laser to
920 nm to excite GCaMP6f and another laser to 1020 nm (the limit of
the laser) to excite jRGECO1a. Both laser beams were multiplexed
using a half-wave plate and a polarizing beam splitter (Thorlabs)
before being focused onto a pair of galvanometer mirrors. In doing
so, mirrors scanned both laser beams over the same neural field of
view (FOV). This allowed us to image from jRGeco1a-expressing SST
and GCaMP6f-expressing PV neurons within the same neural popu-
lation simultaneously.

In all experiments, images were acquired using ScanImage r3.8 in
MATLAB (Vidrio Technologies) at 20Hz, 512 � 100 pixels (2� optical
zoom). The images covered a cortical area of ;150mm � 150mm.
Images were collected at a depth of 180–280mm below the pial surface,
which corresponds to cortical layer 2/3. Before imaging, mice were

habituated to head fixation for 2–3 sessions to reduce stress and anxiety.
Typically, 5–8 nonoverlapping FOVs (each an independent neural popu-
lation) were collected for each mouse. FOVs were determined by hand
mapping the receptive field locations of neurons in the FOV by moving
a sinusoidal grating within a 20° Gabor patch around the screen in 20 �
20° square patches. FOVs without visually evoked responses to these
stimuli or those with receptive fields close to the edges of the monitor
were discarded.

Visual stimuli. Natural movies from the Van Hateren database, as
previously described (Rikhye and Sur, 2015), were displayed on a g
corrected, 7 inch 1080 p LCD computer monitor (Xenarc) placed 3
inches in front of the contralateral eye. All movies were in grayscale.
This computer monitor covered a visual space of ;50 � 70°.
Stimulus timing was controlled using Psychtoolbox-3 with custom
written MATLAB (MathWorks) scripts. Each movie was presented
for 4 s (30 frames/s) and stimuli were interleaved with a 4 s isolumi-
nant gray screen. Each movie frame was adjusted to have a luminance
of 128 (mean of pixel histogram) and an root mean squared (RMS)
contrast of 32 (RMS of pixel histogram) on a 0–255 grayscale using
the SHINE toolbox(Willenbockel et al., 2010).

Optical activation and inactivation. A 473 nm (blue, 200 mW peak
power) laser and a 532nm laser (300 mW peak power, Opto Engine)
were used to activate ChR2 and Arch respectively. Both lasers were
coupled to a 0.12NA optical fiber (Thorlabs), and these fibers were
launched into the uncaging beam path of the two-photon microscope.
The uncaging beam path was coaligned with the imaging path so that
the single wavelength laser illuminated the same FOV as the two-photon
laser. In this way, we were able to provide focused activation (or inactiva-
tion) of neurons within the same FOV. These single wavelength lasers
were triggered using a transistor-transistor logic (TTL) pulse generated
by the visual stimulus computer (see description below). Laser power at
the tip of the objective was 1.5 mW for ChR2 and 2.5 mW for Arch
experiments, respectively. Laser power was measured (catalog #S145C,
Thorlabs) before the start of each experiment. Using single-cell imaging,
we determined that these laser powers were sufficient to reliably drive
activation (or suppression) of PV-INs and SST-INs neurons (see Fig.
6A–D). These power values are also consistent with previously published
reports using similar mice (Madisen et al., 2012; Seybold et al., 2015).

In all experiments, we used a stimulus-triggered random stimulation
protocol to activate/inactivate cells (see Fig. 4A). In ChR2 experiments,
each stimulation pattern consisted of four 20ms pulses of laser with a
10ms interpulse interval (i.e., 110ms total duration per stimulation
epoch). In Arch experiments, we used 2 � 40 ms laser pulses with a
5ms interpulse interval (175ms total duration). This pulse pattern
was applied at 22 different frames during a natural movie. The frame
numbers that triggered the pulses were fixed for each experiment.
Specifically, the first pulse occurred at stimulus onset (i.e., triggered
by frame number 1), the last pulse occurred at stimulus offset (frame
number 240), and the remaining 20 pulses were chosen at a fixed
interval. Before the start of each experiment the order of these pulses
was pseudorandomized; the order was noted and used for post hoc
analysis (described below). This was done to minimize spurious net-
work activity caused by rhythmic photostimulation. To calculate reli-
ability, each pulse pattern was repeated 10 times. This resulted in a
total of 220 Laser-on events and 10 Laser-off events (used for con-
trols). Also, to prevent adaptation to repeated presentations of one
movie, we interleaved the pulsed movie with a nonpulsed movie, dur-
ing which no laser was applied. As a consequence, the network was
allowed at least 8 s to recover before the next laser pulse was applied.

To determine which two movies to select, we first presented 40 repe-
titions of five different movies and computed reliability of each neuron
in that FOV as described below. Movies with the highest two reliability
values were then selected as the pulsed and nonpulsed movie. This
method was repeated systematically for each FOV and helped us reduce
the number of unreliable or nonvisually responsive neurons.

Visually responsive neurons and spike rate inference. All data analysis
was performed with custom-written MATLAB (MathWorks) and
ImageJ (NIH) macros that called on built-in functions. Following imag-
ing, images stacks (TIFF format) were first corrected for motion artifacts
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using an open-sourced ImageJ plug-in (https://sites.google.com/site/
qingzongtseng/template-matching-ij-plugin), which maximized the
cross-correlation coefficient between frames. Frames with excessive
motion artifacts that could not be corrected were discarded. Frames with
photostimulation laser artifacts were also discarded from analysis (usu-
ally one to two frames), and cubic spline interpolation was used to
smooth over these blanked frames.

Next, neuronal regions of interest (ROIs) were manually segmented
in ImageJ (NIH) using the Cell Magic Wand tool (https://www.
maxplanckflorida.org/fitzpatricklab/software/cellMagicWand/), and flu-
orescence time series for each neuron was computed by averaging pixels
within each ROI. A modified version of the Cell Magic Wand tool was
used to identify a surrounding neuropil region, which was an annulus of
outer diameter = (15 pixels 1 diameter of cell) around each cell. These
data were then imported into MATLAB for further analysis. The raw flu-
orescence of each cell was computed using the following formula:
F ¼ FRaw � Fneuropil (Kerlin et al., 2010; Siegle et al., 2021).

All data analysis was performed using custom-written scripts in
MATLAB. Significantly visually responsive cells were determined from
the fluorescence time changes (DF/F) by performing a one-tailed
Student’s t test between visually evoked (4 s movie on) and spontaneous
responses (4 s gray screen in between movies). To obtain a better esti-
mate of the spontaneous activity we also collected 120 s of activity to an
isoluminance gray screen before the start of each experiment. Only cells
with p, 0.001 were classified as visually responsive.

We used a two-step procedure to estimate the firing rates of visually
responsive cells. We first detected statistically significant calcium transi-
ents from the DF/F time series of each neuron by analyzing the distribu-
tion of positive-going and negative-going calcium transients as
described previously (Dombeck et al., 2007; Danielson et al., 2016). This
method allowed us to minimize the number of false-positive calcium
transients induced by brain motion (false-positive error rate ,1%).
Next, we filtered the DF/F time series of each neuron so that nonsignifi-
cant transients were zero, and significant transients were untouched.
Following this, we used an optimized deconvolution algorithm for
GCaMP6f (Theis et al., 2016; Sebastian et al., 2019) to infer the firing
rate for each neuron. Briefly, this algorithm inferred the probability of
spiking from statistically significant calcium transients. To convert this
probability into a firing rate (measured in events/s), we multiplied each
probability by 20Hz, the frequency at which the calcium transients were
sampled. Unless otherwise stated, all data analysis was performed using
inferred firing rates.

Change in firing rate and change in reliability following photostimu-
lation. In all photostimulation experiments, analysis was restricted to a
600ms time window (12 imaging frames) following laser activation.
Within this time window, we determined the change in firing rate using
the following formula:

DRateðpÞ ¼ RateLaser on pð Þ � RateLaser off ðpÞ
RateLaser off ðpÞ ;

where p is the pulse number. Because each neuron responded at different
time points of the movie, averaging this across the population of neurons
would obscure any changes in the firing rate (or reliability). Thus, we
aligned the firing rate trace of each neuron obtained on the Laser-off tri-
als (control condition) so that the maximum rate occurred at 1 s follow-
ing stimulus onset. This time index was then used to align the firing rate
traces on the Laser-on trials.

Response reliability to natural movies was calculated using the fol-
lowing equation:

Reliability ¼ 2

T2 � T

XT

i¼1

XT

j¼i11

f i;A � cf i;A ; f j;A � cf j;A
fi;A � cf i;A f j;A � cf j;A ;

where i; j 2 1;T½ � are the index trial numbers and fi;A is the rate on the
ith trial for movie A, cf i;A is the average rate for that trial, and bfA is the
average across trials (mean rate). Thus, from this equation the response

reliability is the average correlation of all pairwise combinations of trials,
corrected for differences in mean firing rate (Rikhye and Sur, 2015).
Similarly, we computed an unbiased estimate of the firing rate variance
between trials for movie A using the following formula:

Variance ¼ 1
T� 1

XT

i¼1

f i;A � bfA� �2

:

In photostimulation experiments, the change in reliability induced
by laser activation was calculated using the following formula:

DReliabilityðpÞ ¼ RelLaser On pð Þ � RelLaser off ðpÞ
RelLaser off ðpÞ :

Similar to the firing rate, we aligned the reliability on the Laser-off
trials so that each neuron was maximally reliable at 1 s. The same time
index was then used to align reliability on the Laser-on trials. To deter-
mine the epoch of maximum and minimum reliability, we calculated the
time index corresponding to the maximum and minimum reliability on
the Laser-off trials from unaligned traces. For the regression analysis (see
Figs. 3, 4, 6), we computed the change in variance using the simple for-
mula as follows:

DVar pmax;minð Þ ¼ VarLaser On pmax;minð Þ � VarLaser Off pmax;minð Þ:

A similar formula was used to calculate DRate and DReliability.
Multiunit rate-based neural network model. We built a simple four-

unit rate-based model of layer 2/3 of visual cortex to study, as proof of
concept, the effects that the SST-PV dynamics had on EXC neuron reli-
ability. Each population was represented by the following single rate-
based equation:

t x
drx
dt

¼ �rx1f
X

y

Wxyry1Ivis inputx 1Ibg inputx 1IOptox

 !
;

where rx is the firing rate of the cell population x (EXC, PV, SST, VIP).
PV units had a time constant t x ¼ 10ms, whereas EXC, SST, and VIP
units had a slower time constant t x ¼ 20ms (Kuchibhotla et al., 2017).
We modeled the rate-current transfer function of each population using
the power-law function as follows:

f Ið Þ ¼ 0:01 I1ð Þ2:2:

EXC, PV, and SST units received visual input (Ivis inputx ), which accu-
rately reflected the temporal activity of natural movie stimulation (Fig.
7A–C). This visual input was the summed activity of a bank of 50 linear-
nonlinear-Poisson (LNP) units. The linear filter consisted of a spatial
log-Gabor receptive field [total of six different orientations (0–180°) and
ranged in size from 12 to 18° of visual angle] and g functions with a
range of temporal delays (140–200 ms). These spatiotemporal receptive
fields closely resemble those seen in mouse visual cortex (Bonin et al.,
2011; Rikhye and Sur, 2015). Because we did not know the locations of
the receptive fields (RFs) a priori, we randomly picked 50 possible loca-
tions on the screen. The same natural movies used in our experiments
were first convolved with each spatiotemporal log-Gabor filter, which
was then rectified with a pointwise nonlinearity to produce a firing rate
estimate. This firing rate estimate was then used to generate an inhomo-
geneous Poisson spike train. To generate input to the different units in
the model, we filtered this Poisson spike train through a facilitating a
synapse to generate the current Ivis inputx . The weight of each synapse was
varied from trial to trial, which together with the stochastic nature of the
Poisson process, created trial-to-trial variability in the model, which
closely resembled the variability observed between movies (see Fig. 7D).
EXC and PV units received summed input from units with smaller log-
Gabor sizes, whereas SST units received input from larger log-Gabor
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sizes reflecting differences in preferred spatial frequencies of each cell
type (Ma et al., 2010). VIP units did not receive any visual input.

All units received background current (Ibg inputx ), which was modeled
as a stochastic Poisson process. We varied input rates between the differ-
ent units (EXC and SST = 10Hz, PV = 24Hz, VIP =15Hz) to match
spontaneous firing rates observed in vivo. In this way, the spontaneous
activity was uncorrelated between each neuronal subtype in our model
and therefore represented an independent source of noise.

In experiments with optogenetic perturbation, we modeled optoge-
netic input into both PV and SST units (IOptox ) as a train of square wave
pulses, which mimicked the temporal properties of the laser stimulation
used in our experiments. To test for robustness and to mimic natural
trial-to-trial variability of ChR2 and Arch, we varied the pulse amplitude
by 6 10% in each trial by drawing values from a uniform distribution.
The amplitude values were SST-ChR2 = 25mA, PV-ChR2 = 45mA, and
PV-Arch =�50mA.

Connections among populations were given via the following weight
matrix:

W ¼
Wee
Wpe
Wse

Wep
Wpp
Wsp

Wes
Wps
Wss

24 35 ¼
0:817
0:8535
0:878

�0:986
�0:99

0

�0:412
�0:387

0

24 35;
where Wxy is the weight of the connection from neuron y to neuron x.
In some experiments, we parametrically reduced the strength of the
SST!PV connection by setting WPS to either 75, 50, 25, or 0% of the
original value. This weight matrix reflects the known connectivity
between neuron subtypes in the visual cortex and is derived from previ-
ously published results (Pfeffer et al., 2013; Litwin-Kumar et al., 2016).
These connection weights were adjusted so that the model responses
and reliability matched our experimental observations (see Fig. 8D).

To compute reliability, we simulated 30 trials with the same visual
stimulus, and used the same equation above to compute EXC unit reli-
ability. To test the robustness of our model to parameter changes, we
created 500 models (see Fig. 8, each dot) by independently varying all
the parameters of the model by 6 10% of the current values. Numerical
integration was performed in MATLAB using the forward Euler method
with a time step of 0.05ms.

To determine which factors (e.g., PV suppression, EXC suppression)
contributed the most to the changes in EXC unit reliability following
PV/SST activation/suppression, we performed multivariate linear regres-
sion using the following model:

DEXCReliability; b 0 1 b 1DSST Firing Rate1 b 2DPV Firing Rate

1 b 3DEXCFiring Rate1 b 4EXC reliability ðpreÞ:

Linear regression was performed in MATLAB (using the fitlm func-
tion), and statistical tests (Student’s t) were computed to assess the sig-
nificance of each predictor.

Experimental design and statistical analysis. All statistical analyses
were performed using custom-written scripts in MATLAB and R. No
tests were conducted to determine sample size. Data were first tested for
normality using the Shapiro–Wilk test. All data presented here are non-
normally distributed, thus all statistical tests were conducted using non-
parametric statistics. Although no additional tests were performed to
determine sample sizes, the number of animals used in each experiment
is comparable to that of similar studies in the field (Rikhye and Sur,
2015; Zhu et al., 2015). Information about the number of mice and sex is
provided in the figure legends.

Our experiments involved testing the influence of laser activation on
the same population of neurons; thus all comparisons were performed
using nonparametric repeated-measures ANOVA (Friedman test) with
Bonferroni’s correction, and rank-sum post hoc tests with significance
value was set to 0.05. Post hoc tests were performed using the two-tailed
Wilcoxon rank-sum test relative to the Laser-off condition. To deter-
mine whether the change in reliability was significant, we performed
permutation tests (corrected for familywise error rate) where we
resampled with replacement (10,000 permutations) from the change

distribution and tested whether the sampled distribution was signifi-
cantly different from zero using a one-tailed rank-sum test. Unless oth-
erwise stated, data are presented as median 6 95% CI (calculated using
bootstrap sampling). All confidence intervals were determined using
bootstrap. All box-whisker plots show median (notch), interquartile
range (box edges), and data range (whiskers). All p values are labeled in
the figures and in the corresponding legends.

Data availability. All scripts used in analysis and model simulations
are available on Github (https://github.com/toxine4610/PV_SST_
Circuits). Raw imaging and other data are available from the corre-
sponding author on reasonable request.

Results
SST and PV-INs have mutually exclusive dynamics during
epochs of reliable firing
To simultaneously image inhibitory and pyramidal neurons in
layer 2/3 of V1, we expressed the genetically encoded calcium in-
dicator (GECI) GCaMP6f in PV-tdTomato and SST-tdTomato
mice (PV-Cre and SST-Cre x Ai14) via stereotactic injections of
an adeno-associated virus (Fig. 1A; see above, Materials and
Methods). Because PV- and SST-INs in these mice expressed the
red fluorescent protein, tdTomato (see above, Materials and
Methods, our optical setup to minimize spectral overlap between
red and green channels), we reasoned that the majority of
tdTomato-negative neurons would primarily be pyramidal EXC
neurons. We measured the reliability of EXC neurons in awake,
passively viewing mice to repeated presentations of naturalistic
movies (five different movies) using two-photon calcium imag-
ing. We used natural movies because they are known to drive
sparse and reliable responses from EXC neurons across different
species (Kayser et al., 2003; Haider et al., 2010; Froudarakis et al.,
2014; Rikhye and Sur, 2015). We quantified the trial-to-trial
response reliability of these EXC neurons for each movie by
computing the average of all pairwise correlations (corrected
for differences in the mean firing rate) between single trial
responses (see above, Materials and Methods). By this defini-
tion, reliability measures the degree of trial-to-trial similarity
in evoked responses to a given movie. As expected, response
reliability was strongly negatively correlated with between-
trial variability (Fig. 1B,C), as the least variable neurons also
had responses that were highly similar across trials.

In all imaged populations (10 mice, 1101 neurons), EXC ac-
tivity patterns spanned a range from highly stereotyped and reli-
able responses to weak and variable activity. On average,
however, most neurons (37.7 6 15.4%) in each population
responded reliably (.0.4; i.e., similar responses on at least 40%
of the trials) to at least one movie. EXC neuron activity was typi-
cally punctuated by brief epochs of highly reliable responses (Fig.
1B). These observations agree with previous studies (Froudarakis
et al., 2014; Rikhye and Sur, 2015), and establish that naturalistic
movies can drive EXC neurons in mouse V1 to respond reliably
and with low variability between trials.

We found there was a strong correlation between reliability
values computed directly from the changes in fluorescence values
compared with those computed from spike rates inferred from
the calcium traces (Fig. 1D). This suggests that applying addi-
tional processing to the calcium signal in the form of deconvolu-
tion does not change the interpretation of trial-to-trial reliability.
Importantly, deconvolution helps to remove the long tails of cal-
cium indicator fluorescence decay (Pnevmatikakis et al., 2016;
Sebastian et al., 2017, 2019; Stringer and Pachitariu, 2019; Wei et
al., 2020), which in turn would result in artificially higher reli-
ability values. These data indicate that the deconvolution
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faithfully captures the spike rates of cortical neurons (Vogelstein
et al., 2010; Kwan and Dan, 2012; Berens et al., 2018; Evans et al.,
2019; Ali and Kwan, 2020; Wei et al., 2020; Lawrence et al.,
2021).

With the aim of elucidating the inhibitory mechanisms re-
sponsible for this reliable coding of naturalistic scenes (Fig. 1E),
we first quantified the response properties of different IN sub-
types to the same movies. Similar to EXC neurons, both PV-INs
and SST-INs responded to these movies with an approximate
twofold increase in response rate over spontaneous activity (Fig.
1F). Notably, there was no significant difference in evoked
response rates between these INs (p = 0.131, rank-sum test).
Interestingly, we noticed that movies that recruit a greater frac-
tion of reliably responding EXC neurons also recruit more reli-
ably responding PV-INs and SST-INs (Fig. 1E).

To further examine the relationship between EXC reliability
and IN activity, we characterized PV-IN and SST-IN activity
around epochs of reliable/unreliable EXC neuron firing. In each
simultaneously recorded neural population, we computed the
reliability of EXC neurons and the mean rate of P-INs/SST-INs

in 200ms time bins following stimulus onset. In each time bin,
we then computed the fraction of reliably responding EXC neu-
rons (i.e., neurons with reliability .0.4), which gave us a mea-
sure of how consistently the population responded to each movie
repetition and the fraction of active PV-INs/SST-INs. Aligning
the fraction of active INs to the epoch of maximum reliability,
which facilitated comparisons between different movies and
populations so that each had different response dynamics,
revealed that the majority of PV-INs were active during epochs
of unreliable EXC neuron firing (Fig. 1G,H). In contrast, SST-
INs were most active during epochs when EXC neurons were
most reliable. Therefore, although similar in response magni-
tude, PV-INs and SST-INs are active during distinct epochs of
EXC neuron activity.

Do INs also respond reliably to these movies? To better
quantify the reliability of the different IN subtypes, we re-
stricted GECI expression to INs by injecting an adeno-associ-
ated virus encoding a Cre-dependent variant of GCaMP6f in
either PV-Cre or SST-Cre mice (Fig. 1I). This method allowed
us to avoid neuropil contamination from neighboring EXC

Figure 1. SST and PV-INs respond during distinct epochs of EXC neuron activity. A, Schematic showing experimental setup and method to record from EXC neurons. B, Raster plots (trials vs
time) of two simultaneously recorded EXC neurons showing reliable and sparse responses to the same movie. Gray lines show trial-averaged responses, and shaded areas indicate SEM over tri-
als. Shaded purple bar shows time period (epoch) when these EXC neurons are reliably activated. C, Scatter plot showing strong negative (positive) correlation between intertrial variance
(mean) and response reliability. Each data point is the mean response reliability and the across-trial variance of each imaged population, error bars indicate SEM (19, each with 22–87 neurons;
10 mice, 6 female, 4 male). D, Scatter plot showing the correlation between reliability computed from either DF/F or inferred spike rates. E, Pie charts showing moviewise distribution of reliably
responding EXC (top), PV (middle), and SST (bottom) neurons. Movies that recruit a greater fraction of reliably responding EXC neurons also recruit more reliably responding PV and SST-INs. F,
Comparison between evoked (averaged from 5 different movies) and spontaneous (Spont., gray screen) activity for all the three cell types, expressed in number of inferred events per second.
All cell types showed a significant increase in evoked response rate compared with spontaneous activity. Error bars indicate SEM. G, Histogram showing the fraction of active PV (left) and SST-
INs (right) in 200 ms time bins aligned to peak EXC population reliability. Triangles above the histograms indicate mean time to peak activity. There was a significant difference between PV
and EXC neuron activation times (p, 10�6) but no significant difference between activation times for SST and EXC neurons (p = 0.129). Data in G are from 10 mice (sex as mentioned above;
1101 EXC neurons, 120 SST-INs, 186 PV-INs). H, Bar plots comparing the median fraction of active PV and SST-INs during epoch of unreliable and reliable EXC neuron firing, respectively. Error
bars indicate 95% CI. I, Method to image INs. J, Example raster plot of a PV and an SST-IN to the same movie. Format same as B, K, Histogram of PV and SST-IN reliability in relation to EXC
neuron reliability (gray). Triangles above the histograms indicate mean reliability pooled over all neurons. Inset, Comparison of median reliability for all cell types. Each data point is the median
reliability of each imaged population. Data from PV = 8 mice (690 neurons; 5 male, 3 female); SST = 8 mice (368 neurons); EXC = 10 mice (1101 neurons). All p values computed using
grouped Bonferroni-corrected rank-sum test. N.S., non-significant.
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Figure 2. SST-INs are temporally delayed relative to PV-INs in reliably processed movies. A, Left, Experimental setup. Briefly, a 1020 nm laser and a 920 nm laser were combined using a
half-wave plate (HWP) and a polarizing beam splitter (PBS) to optimally activate jRGECO1a and GCaMP6f in SST and PV-INs, respectively (see above, Materials and Methods). Middle, Example
field of view showing colabeled PV and SST-INs. Image covers a cortical area of 150mm � 150 mm. Right, Example calcium transients from simultaneously recorded interneurons. B, Top,
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neurons. Interestingly, although PV-
INs responded strongly to most mov-
ies, the responses were much more
variable between trials (Fig. 1J,K). As a
consequence, PV-INs were less reliable
than EXC neurons. In contrast, SST
and EXC neurons had similar reliability
values (Fig. 1J,K).

Together, these results suggest two
complementary modes of inhibition, with
SST-INs providing reliable inhibition dur-
ing epochs of reliable EXC firing and PV-
INs providing unreliable inhibition during
unreliable epochs.

The joint dynamics of SST and PV-INs
scale with EXC reliability
Given this complementary relationship
between PV and SST-INs, we next sought
to characterize the trial-by-trial interac-
tions between PV and SST-INs within
the same neuronal population. To gain
independent genetic access to both cell
types (He et al., 2016), we crossed SST-
Cre mice with PV-FlpO mice to create a
strain of double transgenic mice (SXP
mice), where SST-INs express Cre recom-
binase and PV-INs express flp recombi-
nase. To monitor the joint activity of
these IN subtypes in vivo, we concurrently
expressed the red GECI (jRGECO1a) in
SST-INs and the green GECI (GCaMP6f)
in PV-INs in SXP mice and performed
dual-wavelength calcium imaging (Fig.
2A). Using custom optics and filters, we
scanned the same field of view with two
multiplexed lasers, one tuned to 1020nm
to excite jRGECO1a and the other tuned
to 920nm to excite GCaMP6f (see above,
Materials and Methods). These wavelengths optimally excite each
GECI with very little spectral overlap (Dana et al., 2016; Fig. 2B).
Notably, we observed a negligible fraction of colabeled cells (data
not shown), confirming that the labeled PV-INs and SST-INs
were indeed nonoverlapping cell types (Tremblay et al., 2016).

To quantify the temporal relationship between these INs we
first computed CCGs between single trial responses of PV and
SST-INs. We then estimated the activation delay and the

correlation strength between each pair from the Gaussian func-
tion that best fit the CCG (average fit R2 = 78.96 4.6%; Fig. 2C).
Across all recorded pairs, we measured an average time lag of
�321ms (CI, �360 to �283ms), indicating that most SST-INs
respond after PV-INs (75.44% of pairs, five mice; Fig. 2C). Note
that this delay measures the time difference between the peak cal-
cium activity of SST and PV-INs, and not the spiking onset la-
tency, which is significantly shorter (Ma et al., 2010).

Interestingly, the strength and timing of these interactions
also differed between movies, with some movies evoking more
temporally correlated and delayed activity than others (Fig. 2D).
Given that EXC neuron reliability also varied between movies,
we next sought relate joint PV-SST activity with EXC reliability.
However, because of technical limitations, we were unable to re-
cord from all three cell types simultaneously. Thus, we compared
simultaneously recorded joint PV-SST activity to EXC neuron
reliability obtained from separate mice but using the same mov-
ies and at similar cortical locations (Fig. 1, data). Movies that
were more reliably processed (i.e., those with higher median
EXC neuron reliability) evoked stronger activity from SST than
PV-INs (Fig. 2E), which was consistent with our data in Figure 1.
Furthermore, PV-SST pairs were more strongly correlated and
had longer delays in movies that were more reliably processed,
than movies that were less reliably processed (Fig. 2E–G).
Multivariate linear regression analysis confirmed that the ratio of

/

Images of jRGECO1a-expressing SST-INs and GCaMP6f-expressing PV-INs taken at 920 nm
and 1020 nm, respectively. Bleed through from the green to the red channel can be clearly
seen at 920 nm (yellow arrowheads). In contrast, no green signal can be detected at
1020 nm. Bottom, No jRGECO1a activity can be detected at 920 nm compared with 1020 nm.
In contrast, no GCaMP6f activity can be detected at 1020 nm. Each trace is matched to the
same neuron and shows activity in response to a series of natural movies (800 s long,
acquired at 20 Hz). C, Left, Trial-averaged responses from a pair of simultaneously recorded
PV and SST-INs. Right, CCG of this pair. Orange line shows Gaussian fit to trial-averaged CCG.
Shaded areas indicate SEM over trials. D, Difference in correlation for two different movies
for the same PV and SST-IN pair. E–G, More reliable movies have a stronger SST peak activity
compared with that of PV. E, Longer delays between SST and PV peak activity (F) and stron-
ger PV-SST correlation at peak delay (G). Data are from 2292 pairs, 5 mice (3 female, 2
male). Data points denote median 6 95% CI for each movie; p values computed using F
test to measure significance of the trend relative to a constant model.

Figure 3. SST-INs strongly inhibit PV-INs via the SST!PV circuit. A, Inset, Cre-dependent ArchT was expressed in SST-INs,
and Flp-dependent GCaMP6f was expressed in PV-INs in SXP mice. Representative trial-averaged firing rate from one PV-IN
showing that suppressing SST-INs strongly increases the firing rate of PV-INs. Shaded area indicates SEM over trials. B, Left,
Response rate change in one representative population of PV-INs (8 neurons) aligned to laser onset. All PV-INs increase firing
rates following suppression of SST-INs. Right, Quantification of change in response rate of PV neurons following SST suppression
relative to response rate on Laser-off trials. There is a significant increase in PV activity (p, 0.001, permutation test) regard-
less of when SST-INs are suppressed during a movie. Shaded area, 95% CI. Data from three mice (121 PV neurons). C, Inset,
Cre-dependent ChR2 and jRGECO1a were expressed in SST-INs, whereas Flp-dependent GCaMP6f was expressed in PV-INs in
SXP mice. Representative example trial-averaged firing rate from one simultaneously imaged PV-SST pair, showing a strong
suppression of PV-INs following SST-IN activation. The peak suppression occurs almost at the same time as SST-INs reach peak
activation. D, Left, Example cross-correlogram between all pairs of simultaneously recorded SST (n = 4) and PV-INs (n = 9) for
an example population, showing the effect of SST activation on the time lag between PV and SST-INs. Gaussian fit is not
shown. Data here are averaged over all stimulation epochs. Shaded area indicates SEM. Right, Box-whisker plot showing that
activating SST-INs increases the time lag between PV and SST-INs (p = 0.235, Bonferroni-corrected rank-sum test). Data from
three mice (84 PV neurons, 39 SST neurons), all males.
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Figure 4. Increasing PV-IN activity reduces EXC neuron reliability. A, Diagram describing random stimulation strategy. A brief laser pulse (stimulation event) was applied at 22 equally spaced
time points during a 4 s movie (light blue lines). At each movie repetition, stimulation event time is drawn from this distribution at random (dark blue line). The bottom plots show the timing
of each stimulation event in relation to the reliability of an example EXC neuron (black line). Following this, post hoc analysis was used to identify stimulation events that occurred within peri-
ods of reliable firing and unreliable firing (shaded purple and green, respectively). B, Diagram of experimental setup. C, Left, Representative example of an EXC neuron that is suppressed fol-
lowing PV activation. Blue line indicates the time of the stimulation event. Right, Change in firing rate for each PV stimulation event. To facilitate comparisons between movies and mice, all
neurons were aligned to have a maximum reliability at 1 s. All shaded areas are 95% CI of the median. Yellow circles represent nonsignificant change (relative to 0) and were computed using
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PV-to-SST activity, lag duration and the correlation strength
between PV and SST-INs were all significant predictors of EXC
neuron reliability (p = 0.0038, F test relative to constant model).

Our observation that peak SST activity is delayed relative to
PV agrees with recent calcium imaging results showing that
across many different cortical areas, SST-INs respond after PV-
INs (Allen et al., 2017). Furthermore, in V1, sinusoidal gratings
also elicit delayed SST-IN responses (Ma et al., 2010), albeit at a
much shorter time scale. Possible mechanisms (not mutually
exclusive) that could account for this delay include (1) pooling of
inputs from EXC neurons (Karnani et al., 2016), and (2) inhibi-
tory connections between SST and PV-INs. We took advantage
of SXP mice to provide two additional pieces of evidence to sup-
port the latter claim. First, silencing SST-INs optically with
ArchT strongly increased the PV-IN firing rate (Fig. 3A,B), con-
firming a strong inhibitory connection between SST and PV-
INs. Second, optically activating SST-INs with ChR2, suppressed
PV-INs and increased the duration of the temporal delay
between PV and SST-INs (Fig. 3C–D). To discount an alternate
hypothesis that these effects are caused by a polysynaptic circuit
involving EXC neurons, we titrated our laser powers such that
suppressing or activating SST-INs caused little change in the
EXC neuron firing rate (see above, Materials and Methods).
Therefore, these results suggest that the temporal delay is the
result of the SST!PV circuit, which suppress PV-INs as SST ac-
tivity ramps up.

SST and PV-INs bidirectionally modulate EXC neuron
reliability
Our experiments in SXP mice revealed the surprising result that
the strength of temporal interactions between PV and SST-INs,
which is coordinated by the SST!PV circuit, varies with EXC
neuron reliability. Therefore, it is possible that both SST-INs and
PV-INs might work together to reduce variability. Using SST-
Cre and PV-Cre mice crossed with Cre-dependent ChR2 mice
(Ai32), we next asked how photoactivating each IN subtype spe-
cifically during epochs of either reliable or unreliable firing
affected reliability. As the timing and duration of these epochs
are heterogeneous within any given population, we had no way
of estimating a priori when EXC neurons would respond reliably
during a particular movie. To circumvent this issue, we devel-
oped an optical stimulation strategy to activate ChR2-expressing
PV and SST-INs (PV-Cre and SST-Cre x Ai32) at 22 different
time points that spanned the entire duration of a movie (Fig. 4A;
see above, Materials and Methods). Specifically, we first created a
distribution of stimulation events that spanned the duration of a
movie, with the first and last events coincident with the onset

and offset of the stimulus, respectively, and the remaining events
occurring at fixed interval of 200ms. Then, on every movie repe-
tition (trial), we picked a stimulation event from this distribution
in a pseudorandomized manner (Fig. 4A). Thereafter, with post
hoc analysis, we focused primarily on stimulation events that
coincided with epochs of either reliable or unreliable firing.

We first investigated the effect of perturbing PV-IN activity
(Fig. 4B). These brief blue (473 nm) laser pulses were sufficient
to reliably excite PV-INs at all time points during a movie (Fig.
4C). As expected, activating PV-INs suppressed EXC neurons
shortly after laser onset. The magnitude of suppression was
strongest when EXC neurons were most reliable and weakest
when activity was unreliable (Fig. 4D). It is important to note
that the epoch of most/least reliable firing occurs at different
time points in the movie, and for the sake of visualization, we
aligned reliability plots so that the maximum rate occurred at 1 s
following stimulus onset (see above, Materials and Methods).
Activating PV-INs significantly reduced the reliability of EXC
neurons (Fig. 4D). In particular, increasing the strength of PV in-
hibition during epochs of reliable firing led to a;20% reduction
in EXC neuron reliability (Fig. 4E), whereas further increasing
PV-IN activity during epochs of unreliable firing, when they are
normally most active (Fig. 1), did not change reliability (Fig. 4F).
It is important to note that this change in reliability was not
because of an artifact of deconvolution, as we observed a similar
decrease in EXC neuron reliability when we performed the same
analysis using DF/F instead (Fig. 5A). Furthermore, we observed
that this suppression lasted for ;600ms, reflecting polysynaptic
effects caused by activating a large number of PV-INs, and we re-
stricted our analysis of reliability during this time period of maxi-
mum suppression (Fig. 5C,D).

These observed changes in reliability could be because of
changes in either mean response rate (DRate) or between-trial
variance (DVariance) or both. For example, a strong decrease in
response rate, without a change in variability, could also reduce
reliability. To quantify the effect these attributes had on
DReliability, we used multivariate linear regression (model,
DReliability ; 1 1 DRate 1 DVariance). Surprisingly, we did
not observe a correlation between DRate and DReliability follow-
ing PV-IN activation in either response epoch, as neurons that
were suppressed more did not exhibit a larger decrease in reli-
ability (Fig. 4G,H). Instead, the reduction in reliability following
PV-IN activation during periods of reliable firing was strongly
correlated with an increase in firing rate variance between the tri-
als (DVariance, p, 10�3 vs DRate, p. 0.05; t test). This implies
that the change in reliability following PV-IN activation was
because of an increase in variability rather than a change in rate.

Given the highly recurrent architecture of V1 layer 2/3, it is
possible that in addition to EXC neurons, perturbing PV-INs
would also affect SST-INs. To answer this question, we condi-
tionally expressed a FlpO-dependent ChR2 in PV-INs and a Cre-
dependent GCaMP6f in SST-INs in SXP mice (Fig. 4I).
Surprisingly, regardless of when in the movie we activated PV-
INs, we did not observe a suppression of SST-INs (Fig. 4J) or a
change of SST-IN reliability (Fig. 4K). This result implies there is
not an inhibitory PV!SST connection, and the reduction of
EXC neuron rate is not sufficient to alter SST-IN activity.
Importantly, this result implies that the reduction in EXC neuron
reliability following PV activation is not because of a change in
SST!EXC inhibition but rather because of direct PV!EXC
inhibition.

As a control, we repeated these activation experiments in
mice that expressed the red fluorescent protein tdTomato in

/

a permutation test; p values (Bonferroni-corrected rank-sum test) compare changes in firing
rate between epochs of reliable versus unreliable responses (shaded bars). D, Change in EXC
reliability for each stimulation event. E, Left, Representative raster plot of an EXC neuron
showing a reduction in reliability following PV activation during the reliable firing epoch.
Right, Box-whisker plots summarizing the effect of PV activation on EXC neuron reliability.
Each dot is pooled data from one population; p value computed using Bonferroni-corrected
Wilcoxon rank-sum test. F, Same as E but shows no change in reliability when PV-INs are
activated during epochs of unreliable firing. G, H, Scatter plots quantifying the relationship
between DReliability and a change in rate (DRate, left) or a change in between-trial vari-
ability (DVariance, right). Error bars indicate 95% CI of the median; p values computed from
multivariate linear regression analysis. I, Diagram describing method to study the effect of
PV activation on SST-INs. J, Left, Representative SST-IN that shows no change following PV
activation. Right, No change in SST rate for all PV activation events. K, No change in SST reli-
ability for all PV activation events.
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either PV or SST-INs instead of ChR2. In these mice, we found
no significant change in either response rate or reliability of EXC
neurons following laser stimulation (Fig. 5G–L). Additionally,
inferring firing rates via deconvolution did not influence our reli-
ability calculation as neurons that had reliable calcium transients
also had reliable inferred rates (Fig. 5A–F).

In contrast to PV-INs, activating SST-INs had a much weaker
suppressive effect on EXC neurons (Fig. 6A,B; p , 10�4, one-way
Kruskal–Wallis ANOVA relative to PV-ChR2). This was in part
because of a disinhibitory effect caused by a lifting of PV inhibition
following SST activation as ;27% of the neurons (8 of 20

populations) showed an increased rate fol-
lowing SST activation. Also in contrast to
PV activation, increasing the strength of
SST inhibition increased the reliability of
EXC neurons (Figs. 5B, 6C). This effect
was most significant when SST-INs were
activated during epochs of unreliable fir-
ing (Fig. 6E). This increase in reliability
was correlated with a strong reduction in
trial-to-trial variance and a modest
increase in response rate (Fig. 6G).
Multivariate linear regression confirmed
that both variables had a significant effect
on DReliability (DVariance, p , 10�5;
DRate, p, 10�2; t test). Interestingly, fur-
ther increasing the activity of SST-INs
during periods of reliable firing did not al-
ter EXC neuron reliability and only mar-
ginally reduced trial-to-trial variance (Fig.
6D–F).

Using SXP mice, we found that SST
activation strongly suppressed PV-INs,
regardless of when the stimulation
occurred during the movie (Fig. 6H,I).
Surprisingly, unlike EXC neurons, activat-
ing SST-INs further reduced the reliability
of PV-INs (Fig. 6J). Therefore, in-
creasing SST inhibition influences both
EXC neuron reliability and the dynamics
of PV-IN inhibition.

Together, these results demonstrate
complementary roles of PV and SST-
INs in modulating EXC neuron reliabil-
ity (Fig. 6K,L). In particular, increasing
PV inhibition when EXC neurons are
reliable decreases reliability by increas-
ing variability between trials but does
not alter SST-IN dynamics. On the other
hand, increasing SST inhibition when
EXC neurons are unreliable increases
reliability by a combined effect of
decreased variability and, to a lesser
extent, a disinhibitory increase in
response rate caused by a suppression of
PV-INs.

Computational model predicts that
SST-INs increase reliability by
suppressing PV-INs
How do SST-INs increase EXC neuron
reliability? Given the complementary
relationship between PV and SST-INs,
we hypothesized that the inhibitory

SST!PV circuit might play a role in coordinating activity
between these INs and consequently modulating EXC neuron
reliability. To test this hypothesis, we developed a computational
model of V1 microcircuit dynamics that simulated the mean fir-
ing rate of different neural subtypes (Fig. 7A; see above,
Materials and Methods). Our model comprised three rate-based
units (EXC, SST, PV), which were interconnected through con-
nectivity parameters (Kuchibhotla et al., 2017). EXC, SST, and
PV units in our model received visual input from a bank of LNP
units (Paninski, 2004), each with Gabor-like spatiotemporal

Figure 5. Deconvolution and analysis window length does not affect reliability; change in rate and reliability is not because of
stimulation laser artifacts. A, Change in reliability measured using DF/F without deconvolution for PV neurons. B, Change in reliability
measured using DF/F without deconvolution for SST neurons. Data same as Figures 4 and 6. C, Percent change in EXC neuron response
following laser activation of PV-INs. All data analysis was limited to a 600ms window indicated by the gray box. During this period,
the laser maximally suppresses EXC neurons. D, Plot of change in EXC reliability following PV activation at stimulus onset over different
analysis window lengths. We found that changing the window length within 50 (1 frame) to 600 ms (12 frames) following laser offset
did not significantly affect the reduction in EXC reliability caused by PV activation. The effect, however, was significantly diminished
when the entire 4 s stimulus-on period (open circle) was included in the analysis. This is mainly because of the fact that PV-INs stop
exerting an inhibitory effect on EXC neurons after 650ms as shown in C. E, F, Same as C and D but for SST-IN activation instead.
Again, changing the duration of the analysis window does not affect the increase in EXC reliability caused by SST activation. Data in
C–F indicate mean6 SEM for stimulation at stimulus onset. Analysis of other stimulation epochs yielded qualitatively similar results.
All shaded areas are 95% CI of median. G–I, No significant change in response rate in tdTomato-expressing mice following stimulation
with either blue (G, H) or green laser (I; see above, Material and Methods). J–L, No significant change in reliability in the same
tdTomato-expressing mice. Data pooled from PV-tdTomato (blue laser) = three mice (120 neurons), PV-tdTomato (green laser) =
three mice (102 neurons), SST-tdTomato = three mice (98 neurons). All p values are nonsignificant (permutation test). Shaded areas
indicate 95% CI of median. N.S., non-significant.
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Figure 6. Increasing SST-IN activity increases EXC neuron reliability. A, Diagram of experimental setup. B, Left, Representative EXC neuron that shows a modest decrease in firing rate follow-
ing SST activation (blue bar). Right, Change in firing rate for each SST stimulation event shown in relation to EXC neuron reliability on light-off trials. C, Change in EXC neuron reliability for
each SST stimulation event. D, Representative raster plot of an EXC neuron and box-whisker plot showing no change in reliability following SST activation during epoch of most reliable firing.
E, Same as D but showing that SST activation during epoch of least reliable firing can increase EXC neuron reliability. F, G, Scatter plots quantifying the relationship between DReliability and a
change in rate (DRate, left) or a change in between-trial variability (DVariance, right). Error bars are 95% CI of the median; p values computed from multivariate linear regression analysis.
Data in B–G are from 8 SST-ChR2 mice (622 neurons, 19 populations). H, Diagram describing method to study the SST activation on PV-INs. I, Left, Representative PV-IN that is suppressed fol-
lowing SST activation. Right, PV-IN firing rate is significantly suppressed for all SST activation events. J, SST activation reduces the reliability of PV-INs. Data in same format as Figure 4 and are
from 4 SXP mice (372 PV neurons). K, L, Diagram summarizing photoactivation results. N.S., non-significant.
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receptive fields of different orientations and spatial frequencies
(Fig. 7B; see above, Materials and Methods). Additionally,
each unit in the model also received Poisson noise, which
modeled background inputs. As a result, each unit in our
model had both an independent (uncorrelated) and a shared
source of variability. Because of the stochastic nature of the
Poisson process, each trial produced visual inputs, which dif-
fered in both the number and timing of spikes. As previously
reported (Rikhye and Sur, 2015), this method allowed us to
accurately capture both the temporal dynamics and reliabil-
ity of the same movies that we used in our experiments (Fig.
7C,D).

First, we asked whether this model could recapitulate and
explain the relationship between PV-SST delay and EXC reliabil-
ity (Fig. 2). As in our experimental data, SST units in our model
also lagged behind PV units with a variable delay (Fig. 8A).
Parametrically reducing the strength of the SST!PV connection
from maximum to 0% (no connection) reduced the duration of
the lag (Fig. 8B). This is consistent with the proposal that the
temporal relationship observed between PV-SST pairs in vivo is
because of the inhibitory SST!PV circuit. Also similar to our
experimental results, we observed a correlation between the du-
ration of the PV-SST lag and EXC reliability in that models with
higher EXC reliability also had more delayed SST peak activity
relative to PV peak activity (Fig. 8C). Removing the SST!PV
connection abolished this relationship, increased PV unit activity
and reduced EXC neuron reliability (Fig. 8C). We performed
multivariate regression analysis to identify the variables that con-
tributed most to this temporal relationship. Interestingly, the
strength of the SST!PV connection and the activity fraction of
SST units to PV units were the biggest predictors of the lag dura-
tion. This implies that conditions that strongly recruit SST-INs,
such as reliable EXC neuron firing, will increase the dynamics of
joint PV-SST activity. Therefore, intact joint PV-SST dynamics
seems to be necessary for reliable EXC neuron firing.

Next, we asked whether this model could predict the results
of our photostimulation experiments. We simulated optical acti-
vation by injecting a brief train of depolarizing current into SST
units with similar temporal properties as in our experiments. As
in our experiments, increasing the strength of SST inhibition
increased EXC reliability and suppressed PV units (Fig. 8D–F).
Notably, the model demonstrates that SST activation is most
effective at increasing reliability when EXC units were unreliable.

We found a strong correlation between the change in EXC reli-
ability and the change in PV unit activity in that large increases
in reliability were accompanied with a strong suppression of PV
unit activity (Fig. 8E). Changes in the EXC unit firing rate, on the
other hand, were poorly predictive of the increase in reliability
(Fig. 8F). Interestingly, we observed that gradually reducing the
strength of the SST!PV connection reduced the SST-induced
suppression of PV units (Fig. 8H) and increased EXC variability
(Fig. 8I, left). Our model also correctly predicted a decrease in reli-
ability following PV activation (Fig. 8G). This decrease in EXC
reliability was independent of the strength of the SST!PV con-
nection (Fig. 8I, right; p = 0.54, Cochrane–Armitage test for
trend). Together, these simulation results suggest that SST-INs
increase reliability primarily by suppressing PV-INs.

Furthermore, these results raise the possibility that PV
units might be injecting noise into EXC units. In support of
this idea, transiently suppressing PV units by injecting a brief
hyperpolarizing current increased reliability when EXC units
were unreliable but decreased reliability when EXC units
were reliable (Fig. 8J). Therefore, our model supports the hy-
pothesis that SST-INs reduce variability in EXC neurons by
suppressing PV-INs.

Suppressing PV-INs improves EXC neuron reliability
The main prediction of our model is that the increase in EXC
reliability is caused by an SST-induced suppression of PV-INs.
To examine this prediction in vivo, we directly suppressed PV-
INs in mice that transgenically expressed Arch (PV-Cre x Ai35
mice; Fig. 9A). As expected, Arch-expressing PV-INs were
strongly suppressed following green laser stimulation with a la-
tency that was comparable to SST activation (Fig. 9B). This
method therefore mimicked the suppressive effect that SST acti-
vation had on PV-INs while avoiding the direct effect of SST in-
hibition on EXC neurons.

Because of a transient lifting of somatic inhibition, optically
suppressing PV-INs strongly increased response rates when EXC
neurons were most active (Fig. 9C). Despite this increase in
response rate, suppressing PV-INs during epochs of reliable fir-
ing did not significantly change either reliability or between-trial
variance (Fig. 9D,E). On the other hand, reducing PV inhibition
during epochs of unreliable firing increased EXC neuron reliabil-
ity (Fig. 9F), similar to SST activation. This change in reliability
was primarily because of a reduction in between-trial variance as

Figure 7. Computational model accurately captures temporal dynamics and variability to natural movies. A, Diagram illustrating connectivity among the three major units simulated in this
model. Round connections indicate excitatory synapses, whereas blunt connections indicate inhibitory synapses. B, See above, Material and Methods for details of the LNP model. C, Example
input spike trains produced by the LNP model along with estimated firing rates (blue lines, normalized to maximum) to two different natural movies. Note that the model captures the different
temporal properties of each movie, and as a result produces different inputs for each movie. For each movie, these spike trains are summed and used as an input to either EXC, PV, and SST
units. D, The LNP model is able to recapitulate the moviewise trend in EXC neuron reliability observed in the experimental data (black dots). The gray dots are the average reliability of EXC
units in the model (from 500 simulations; see above, Materials and Methods). Error bars indicate SEM.
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DRate was not a statistically significant predictor (Fig. 9G,H).
Under control conditions, the green laser alone was unable to
change either the firing rate or the reliability of EXC neurons
(Fig. 5I–L). Therefore, transiently reducing PV inhibition with
Arch had a similar effect on EXC neuron reliability as increased
SST-IN activity, confirming our prediction.

Discussion
Reducing trial-to-trial variability within cortical neuron net-
works is critical for accurate sensory information processing;

however, the underlying neural mechanisms remain unknown.
In this study, we used novel double transgenic mice and all-opti-
cal physiology to reveal a previously unknown role of the
SST!PV circuit in bidirectionally modulating the reliability of
EXC neurons to naturalistic stimuli in mouse V1.

Our experiments reveal that a sufficient condition for reliable
sensory processing is active SST-INs and weaker/suppressed PV-
INs and that this mutual antagonism is maintained through the
inhibitory action of the SST!PV circuit. Surprisingly, a study
identified PV-INs, but not SST-INs, as critical regulators of reli-
ability (Zhu et al., 2015). A key reason for this difference is that

Figure 8. Computational model predicts that SST-INs increase reliability by suppressing PV-Ins. A, Representative simulation showing the response of PV and SST units to a natural movie.
Inset, Zoomed view of the onset dynamics to highlight the temporal lag between PV and SST units. B, The delay between PV and SST units is reduced when the SST!PV connection is
removed. Box-whisker plots quantify the change in time lag between PV and SST units caused by parametrically reducing the strength of the SST!PV connection from normal weight to zero
(no connection). Data are pooled from 100 simulations each with randomly drawn connection weights; p value computed using Kruskal–Wallis one-way ANOVA relative to the model with nor-
mal SST!PV connection. C, Left, Significant correlation between PV-SST delay duration and EXC unit reliability for the normal model, which is lost when the SST!PV connection is cut. Right,
Removing the SST!PV circuit increases PV unit firing rate while suppressing SST and EXC units. Error bar indicates SEM over simulations. D, Model predicts that activating SST activation during
epoch of unreliable firing will increase the reliability of EXC units. Inset, Representative raster plot of an EXC unit (orange arrow). E, Large changes in EXC unit reliability are associated with a
large decrease in PV unit firing rate. F, Scatter plot showing no significant relationship between the changes in EXC unit reliability and firing rate following SST unit activation. Each data point
is an independent model simulation (see above, Materials and Methods). G, Model predicts that PV activation will reduce reliability. H, SST-induced suppression is reduced when the SST!PV
connection is cut. Box-whisker plot showing the change in PV firing rate as the SST!PV connection strength is varied; p value computed using Kruskal–Wallis one-way ANOVA relative to the
model with normal SST!PV connection. I, Left, Box-whisker plot showing that the change in EXC unit reliability induced by SST activation varies as the connection strength is changed. Right,
The effect of PV activation on EXC reliability is independent of the SST!PV connection strength. J, Suppressing PV units will result in an increase in variability. All data points are an independ-
ent simulation in which a natural movie is repeated 30 times. To test robustness, we repeated each simulation 100 times, each with randomly drawn connection weights; p values in the scatter
plots are computed from linear regression (see above, Materials and Methods).
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Zhu et al. suppressed PV-INs for a much longer duration than
our study (6 s vs 110ms). The main advantage of our photosti-
mulation method is that it allowed us to show that the effect of
SST and PV-INs on modulating EXC variability is highly de-
pendent on the current reliability of EXC neurons. Namely, SST-
INs were less effective at increasing reliability during epochs of
reliable firing, whereas PV-INs were less effective at reducing
reliability during epochs of unreliable firing. Furthermore, our
model simulations showed that without the SST!PV circuit,
SST-IN activation decreased reliability. Our data therefore sup-
ports the idea that SST and PV-INs must provide temporally re-
stricted inhibition in relation to EXC neurons to change
variability. Long-term suppression of PV and SST-INs would
likely disrupt this relationship between these interneurons.
Therefore, our findings, together with others (El-Boustani et al.,
2014; Lee et al., 2014; Seybold et al., 2015), underscores the im-
portance of using precisely timed perturbations to study the
dynamics of cortical inhibition. Importantly, we demonstrate
that the responsibility of modulating response reliability

does not lie exclusively with one neuronal subtype; instead, it
is the co-operative dynamics between SST and PV-INs that is
important for controlling the temporal fidelity of sensory
processing.

Previous work has shown that feed forward inhibition, acting
through fast-spiking PV-INs, plays a critical role in shaping the
temporal fidelity of EXC neurons. For example, the delay
between inhibition and excitation creates a temporal integration
window (Pouille and Scanziani, 2001; Wehr and Zador, 2003),
and variations in the duration of this window change the spiking
precision of EXC neurons to sensory stimulation (Gabernet et
al., 2005). However, sparse activity patterns, which are common
during natural scene stimulation (Yen et al., 2007), strongly
recruit feedback or recurrent inhibition from SST-INs and only
weakly recruit PV-INs (Tan et al., 2008). Our work reconciles
these observations and demonstrates how the SST!PV circuit
allows recurrent inhibition to modulate the strength of feedfor-
ward inhibition during epochs of reliable coding under naturalis-
tic conditions.

Figure 9. Suppressing PV-INs increases EXC neuron reliability. A, Experimental setup. B, Arch activation transiently suppresses PV-INs with short latency following laser onset. C, Left,
Suppressing PV-INs transiently increases the response rate of EXC neurons. Right, Change in firing rate for all PV suppression event. D, Change in EXC neuron reliability, aligned to reliability on
Laser-off trials. E, Left, Representative raster plot of an EXC neuron showing no change in reliability following PV suppression during epoch of most reliable firing. Right, Box-whisker plot sum-
marizing the effect of PV suppression. Each dot represents the median reliability from each imaged population; p value computed using Bonferroni-corrected rank-sum test. F, Same as E, but
showing an increase in reliability following PV suppression during epoch of least reliable firing. G, Changes in reliability that occur when PV-INs are suppressed during epoch of most reliable fir-
ing are weak because of DRate (left) but not DVariance (right). Each data point in I and J shows median change for each imaged population. Error bars indicate 95% CI of the median; p val-
ues computed from multivariate linear regression analysis. H, Same as G but shows that the increase in reliability is strongly associated with a reduction in variance but not a change in rate.
Data in this figure are from 8 mice (634 neurons, 22 populations).
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A potential biophysical function of the SST!PV circuit may
be to maximize the signal-to-noise ratio of EXC neurons by min-
imizing noise in the synaptic inputs and maximizing spiking at
the soma. Specifically, SST-INs are ideally poised to alter synaptic
integration in EXC neurons by altering the active properties of
dendrites in a branch-specific manner (Lovett-Barron et al.,
2012; Palmer et al., 2012; Chiu et al., 2013; Bloss et al., 2016;
Yang et al., 2016). This, in turn, would allow only the most reli-
able inputs to be integrated (Branco and Häusser, 2011; Egger et
al., 2015). Our observation that SST-INs lag behind PV-INs dur-
ing periods of reliable firing implies that during these epochs, in-
hibition is routed away from the soma and into the dendrites.
Similar results have been observed in the hippocampus and the
barrel cortex, where inhibitory inputs shift from the soma to the
dendrite depending on the firing rate of the neuron (Pouille and
Scanziani, 2004; Tan et al., 2008). Computational models have
shown that this mechanism allows SST-INs to adaptively adjust
the integration threshold at the soma, which in turn can increase
the robustness of spiking in the presence of stochastic inputs
(Fontaine et al., 2014; Huang et al., 2016). Future studies could
be aimed at using our dual labeling technique to further charac-
terize the interactions between PV and SST INs during times
scales more relevant to synaptic integration. There is also a grow-
ing body of evidence that basal forebrain cholinergic inputs
(Chen et al., 2015), and long-range excitatory inputs from other
cortical areas (Zhang et al., 2014; Ibrahim et al., 2016), can mod-
ulate SST-IN activity. Therefore, the SST!PV circuit is an
appropriate target for top-down influences, such as arousal and
attention, to alter local computations in V1 by changing EXC
neuron variability. This notion is further bolstered by several
findings that both cholinergic modulation and higher cortical
feedback, which also change response reliability and selectivity,
can improve stimulus discriminability (Pinto et al., 2013; Zhang
et al., 2014; Chen et al., 2015; Kuchibhotla et al., 2017; Zhang et
al., 2020) by modulating the local excitatory-inhibitory (E-I) dy-
namics in a cell-type specific way (Hertäg and Sprekeler, 2019).

The impact that sensory processing variability has on visual
perception remains debated. Although several studies have estab-
lished a relationship between trial-to-trial fluctuations in sensory
neurons and perceptual decisions (Britten et al., 1996; Nienborg
et al., 2012), it is still unclear if these fluctuations can be filtered
out at later processing stages (Moldakarimov et al., 2015) and
how this affects perception. One important follow-up to our
study would be to investigate the effect that these precisely timed
manipulations have on visual perception (Song et al., 2020).

In conclusion, our study establishes that PV and SST-INs
have complementary roles in controlling neuronal response reli-
ability. The cooperative action of these INs provides a powerful
computational mechanism by which response variability can be
titrated based on task demands (Deneve and Chalk, 2016) and
internal state to improve the coding of stimulus information. In
addition to the visual system, this strategy could also be active in
other cortical areas to effectively gate the flow of information.
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