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O P T I C S

De-scattering with Excitation Patterning enables rapid 
wide-field imaging through scattering media
Cheng Zheng1,2†, Jong Kang Park2,3,4†, Murat Yildirim2,5, Josiah R. Boivin5, Yi Xue1,2,6, 
Mriganka Sur5, Peter T. C. So1,2,3, Dushan N. Wadduwage2,3,7*

Nonlinear optical microscopy has enabled in vivo deep tissue imaging on the millimeter scale. A key unmet chal-
lenge is its limited throughput especially compared to rapid wide-field modalities that are used ubiquitously in 
thin specimens. Wide-field imaging methods in tissue specimens have found successes in optically cleared tissues 
and at shallower depths, but the scattering of emission photons in thick turbid samples severely degrades image 
quality at the camera. To address this challenge, we introduce a novel technique called De-scattering with Exci-
tation Patterning or “DEEP,” which uses patterned nonlinear excitation followed by computational imaging– 
assisted wide-field detection. Multiphoton temporal focusing allows high-resolution excitation patterns to be 
projected deep inside specimen at multiple scattering lengths due to the use of long wavelength light. Computa-
tional reconstruction allows high-resolution structural features to be reconstructed from tens to hundreds of 
DEEP images instead of millions of point-scanning measurements.

INTRODUCTION
Point-scanning multiphoton microscopy (PSMPM), based on two- 
or three-photon excitation, is used routinely for in vivo, volumetric 
biological imaging, especially in deep tissues (1–5). Imaging of 
cortical vasculature in mouse brain has been demonstrated down to 
1.6 mm (3). The near-infrared (NIR) or short-wave infrared femto-
second laser pulses, used in PSMPM, penetrate deep in tissue due to 
the strong inverse relationship between light scattering and wave-
length. The excitation light of PSMPM is focused at the diffraction 
limit enabling efficient nonlinear excitation. Emission photons 
from the focal spot, scattered or not, are then collected by a point 
detector, such as a photomultiplier tube, and assigned to a single 
pixel of the image. Despite the excellent penetration depth, a con-
ventional PSMPM is slow due to the sequential acquisition process, 
and imaging time scales linearly as volume increases, limiting stud-
ies of fast biological dynamics.

An attractive alternative to PSMPM is wide-field multiphoton 
microscopy, typically called temporal focusing microscopy (TFM), 
that achieves optical sectioning by modulating laser pulse width 
while maintaining wide-field illumination (6–8). In TFM, wide-
field multiphoton excitation is enabled by femtosecond laser pulses 
with high pulse energy (~J − mJ). By placing a grating on a conju-
gate image plane at the excitation path, optical dispersion is con-
trolled so that laser pulse width rapidly broadens away from the 
focal plane, resulting in reduced multiphoton excitation efficiency 
(6). Benefiting from long excitation wavelength, TFM provides 

excellent penetration of multiphoton excitation light through 
scattering media. Penetration depths up to over 7 scattering lengths 
(based on emission wavelength) have been demonstrated with 
two-photon excitation (9). With three-photon excitation, penetra-
tion up to 700 m through scattering brain tissue has been shown 
(10). However, in TFM, the emitted photons, with their relatively 
short wavelengths compared to excitation photons, are strongly 
scattered by tissues. Since typical wide-field microscopy registers 
spatial information by relaying the light emitted in the specimen 
plane to the camera, the signal-to-noise ratio and spatial resolution 
of the final image is highly susceptible to the scattering of emitted pho-
tons and aberration of the tissue specimen. Consequently, at shallower 
image planes, TFM images show a background haze (Fig. 1B); as the 
imaging depth is increased, TFM images lose their high-resolution 
information. It is important to note that this susceptibility to emis-
sion light scattering and aberration is common to all wide-field tis-
sue imaging modalities such as various light sheet approaches (11).

Here, we demonstrate a powerful approach to “de-scatter” wide-
field TFM images. Many computational imaging approaches have 
previously been proposed (12–15); while they improve image reso-
lution and contrast at shallower depths (<1 scattering length), most 
of them have not been applied for deep imaging. Notably, Escobet- 
Montalbán and co-workers (9) demonstrated a method called 
“TempoRAl Focusing microscopy with single-pIXel detection 
(TRAFIX)”; they used a set of two-dimensional illumination pat-
terns along with single pixel detection (16) to image as deep as 7 
scattering lengths through a scattering phantom (9). However, this 
approach requires the same number of illumination patterns as the 
number of pixels in the imaged field-of-view with no evident speed-
up over PSMPM. Alemohammad et al. also used a similar technique 
called compressive temporal focusing two photon (CS-TFTP) (14), 
demonstrating 10 times speed-up over PSMPM, but the scattering 
length is not indicated. Both TRAFIX and CS-TFTP, however, have 
field-of-view (FOV)–dependent acquisition times because they use 
point (or single pixel) detection. Theoretical speed-up over PSMPM, 
therefore, is strictly limited to compressibility of the image. To the 
best of our knowledge, no computational TFM with wide-field de-
tection has been demonstrated.
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RESULTS
DEEP-TFM microscope principle
In this paper, we introduce a novel computational de-scattering tech-
nique called De-scattering with Excitation Patterning in TFM (DEEP-
TFM). Similar to previous approaches, we use wide-field temporal 
focusing two-photon patterned excitation; however, the signal is 
measured with a wide-field detector. Briefly, we built a modified tem-
poral focusing microscope that projects arbitrary excitation pat-
terns onto the focal plane using a digital micromirror device (DMD). 
Emission light from the modulated excitation is then detected by a 
camera (see Fig. 2A and Materials and Methods for a detailed de-
scription of the microscope). Because of the NIR wavelengths, exci-
tation patterns maintain their fidelity despite traveling through 
scattering media (10). However, emission photons are scattered by 
tissues, and scattering strength is strongly depth-dependent in 
most biological tissues (10, 17). In practice, TFM images are mini-
mally affected by scattering at or near the surface; as the imaging 
depth increases, scattering gradually degrades mostly high-fre-
quency information in the images. Nevertheless, low spatial fre-
quency information in the images is retained for most depths with 
wide-field detection. Single-pixel detection approaches discard this 
low-frequency information, hence requiring a large number of ex-
citation patterns to reconstruct a de-scattered image. In contrast, 
DEEP-TFM combines the information about the excitation patterns 
with the acquired images, to computationally reconstruct a de-scattered 
image (see Fig. 2B). Experimentally, the number of images needed to 
de-scatter a single FOV depends on the loss of high-frequency in-
formation due to scattering and hence depends only on the im-
aging depth. (see Materials and Methods and text S2 for a detailed 
description of the mathematical model and image reconstruction).

Simulation verification with TFM and PSMPM
The efficacy of DEEP-TFM was first verified through comparison 
with TFM and PSMPM in a simulation. In Fig. 1A, a stack of mouse 
neuron images (256 by 256 by 156 voxels), acquired experimentally 
with a point-scanning two-photon microscope, was used as the 
ground truth. For this, PSMPM requires over 10 million measurements 

(one for each voxel). Then, for each depth plane, the ground truth 
data were convolved with the scattering point spread function 
(sPSF) of the corresponding depth to generate the simulated TFM 
images in Fig. 1B. A conventional TFM requires only 156 measure-
ments (one for each depth), but the image quality degrades as the 
imaging depth is increased. As expected, a huge haze in the back-
ground could be observed, especially near the brighter regions.

To obtain DEEP-TFM images, a set of binary random illumina-
tion patterns of the same image size were generated. Random 
patterns were chosen since they contain all frequencies, thus en-
abling a spread-frequency spectrum modulation. They were then 
convolved with the excitation PSF, multiplied pixel-wise with the 
ground truth data at each plane, and convolved with the sPSF of the 
corresponding depth. Last, these simulated DEEP-TFM data were 
reconstructed with the algorithm presented in Materials and Methods. 
The number of illumination patterns used at different depths increas-
es as we go deeper (Fig. 1D). In total, DEEP-TFM required 8488 
measurements, which is much less than the 10.2 million measure-
ments need by PSMPM. As shown in Fig. 1C, DEEP-TFM is able 
to reject the scattering background and maintain similar image 
quality as PSMPM.

Experimental demonstration on fluorescent beads through 
a scattering medium
Figure  3(A and B) shows representative examples of DEEP-TFM 
imaging of fluorescent beads. We first imaged a mixture of 4- and 
10-m beads through a scattering lipid solution of 1.7 mm (0.15%) 
corresponding to approximately 2 scattering lengths at the emission 
wavelength of 532 nm (all scattering lengths in Results are based on 
emission light wavelength) (18). Figure 3, A1 shows a conventional 
TFM image; Fig. 3, A2 shows the final DEEP-TFM image recon-
structed with Nt = 128 measurements. Since the light from all the 
beads goes through the same thickness of scattering medium, one 
would expect all 4-m beads to show similar scattering behavior in 
Fig. 3, A1. They do; some beads only appear to show more scatter-
ing because they are out of the imaging focal plane (also see fig. 
S3A) but are excited due to the thickness of the TFM excitation 

Fig. 1. Comparison of two-photon imaging scenarios of a mouse neuron (256×256×156 voxels) in a live mouse. (A) PSMPM image (experimental), (B) TFM image 
(simulation; see text S1 for details), and (C) DEEP-TFM reconstruction (simulation). Shown on the top row are the top XY views of the image stacks; shown on the bottom 
row are the side XZ views. (D) The number of measurements used at each z-plane for PSMPM, TFM, and DEEP-TFM. (We only demonstrate up to 2.25 scattering lengths at 
the emission wavelength, which used 128 patterns here. Please refer to fig. S7 for a detailed analysis for 6 scattering lengths).
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plane (which is around 15 m; see fig. S3E). In the DEEP-TFM 
image, the out of focus beads are not visible. Thus, in addition to 
de-scattering, it is interesting to note that DEEP-TFM also im-
proves on the axial resolution over TFM (also see fig. S3C). Pushing 
further to demonstrate imaging at 7 scattering lengths (similar to 
TRAFIX), bead mixture of 1 and 4 m were imaged successfully 
through a layer of high concentration (0.51%) lipid solution; the 
out-of-focus beads shown in Fig. 3B1 again disappeared in Fig. 3B2 
due to the improved axial resolution of DEEP-TFM. For robust 
specimens, like bead samples, it is clear that DEEP-TFM has not 

reached its depth limit even at 7 scattering lengths; however, 128 
versus 256 patterns were required for reconstruction at 2 scatter-
ing lengths versus 7 scattering lengths, respectively. Thus, DEEP-
TFM imaging speed will decrease necessarily as expected from 
our simulation. Nevertheless, even at 7 scattering lengths, for the 
128 × 128 (px2) image shown in Fig. 3B2, DEEP is 64 times faster 
than single-pixel geometries like TRAFIX at the same conditions. 
These results clearly demonstrate that some spatial information 
is available even at large scattering lengths (such as at 7 scat-
tering lengths).

Fig. 2. Experimental setup and imaging strategy of DEEP-TFM. (A) Optical schematic of the imaging system: L1, L2, L3, L4—lenses; DIO, dichroic mirror; OBJ, microscope 
objective; M, Mirror. (B) Proposed computational imaging strategy. First, a set of patterns are projected on a calibration specimen (homogeneous thin fluorescent layer) 
to record the calibration image set in the absence of any scattering. Then, the same patterns are projected to record the encoded images through a scattering medium. 
The de-scattered images are then reconstructed.

Fig. 3. DEEP-TFM results of fluorescent beads and ex vivo tissue. (A1) Wide-field temporal focusing two-photon microscopy (TFM) image of a mixture of 4- and 10-m 
beads imaged through a scattering medium of 2 scattering lengths. (A2) DEEP-TFM image of the FOV in (A1) reconstructed with 128 measurements (Nt = 128). (B1 and 
B2) Respectively the TFM and DEEP-TFM (with Nt = 256) images of a mixture of 1- and 4-m beads imaged through a scattering medium of 7 scattering lengths. (C1 and 
C2) Respectively the TFM and DEEP-TFM (with Nt = 128) images of a mouse kidney specimen. Shown in blue, green, and red channels are respectively nucleus, Alexa 
Fluor 488–conjugated WGA, and F-actin. (D1 and D2) Respectively the TFM and DEEP-TFM (with Nt = 128) images of a mouse muscle specimen at a 190-m-deep imaging 
plane. The blue and red channels are respectively nucleus (stained with Hoechst 33342) and F-actin (stained with Alexa Fluor 568 Phalloidin). (E) A representative image 
of F-actin (the red channel) of the same sample in (D) at a 170-m-deep imaging plane comparing the TFM versus DEEP-TFM (with Nt = 128) images. Scale bars in (A) to 
(C) and (D) and (E) are 30 and 20 m, respectively, in length.
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Experimental demonstration on ex vivo biological samples
Next, we imaged a 16-m-thick ex vivo mouse kidney histologi-
cal section through the same 1.7 mm of scattering lipid solution 
of 0.15% corresponding to 2 scattering lengths (Fig.  3, C1 and 
C2). Figure 3C2 illustrates the immediate improvement in image 
contrast and signal-to-background ratio achieved by DEEP-TFM 
(see fig. S4 for additional results). We also imaged a 200-m-thick 
section of ex vivo muscle tissue stained for nuclei (blue chan-
nel, Hoechst 33342) and F-actin (red channel, Alexa Fluor 568 
Phalloidin). The FOV was nearly 150 m × 150 m with 256 × 
256 pixels. All DEEP-TFM reconstructions were performed with 
Nt = 128 measurements. Representative images comparing TFM 
and DEEP-TFM at a 190 m deep plane are shown in Fig. 3 (D1 and 
D2). Last, in Fig. 3E, we show a direct comparison of TFM and 
DEEP-TFM at a 170-m-deep plane in the same F-actin image. 
As seen, in deep imaging, TFM loses a substantial amount of 
high-frequency information, with almost no high-resolution de-
tail visible. In contrast, with DEEP-TFM, most fine details are 
reconstructed.

Experimental demonstration on in vivo mouse  
brain vasculature
The use of computational approaches to overcome tissue scattering 
often works well in fixed tissue samples but not in complicated 
in vivo experiments. As computational approaches are being devel-
oped for brain imaging experiments in neuroscience to improve 
imaging depth, speed, and resolution, it is critical to evaluate their 
performance for imaging in vivo biomedical specimens. As a first 
demonstration of this kind, DEEP-TFM in vivo imaging of mouse 
brain vasculature was undertaken. Mouse blood vessels were la-
beled with a rhodamine + dextran dye (70 kDa; D1841, Thermo 
Fisher Scientific). During the experiment, surface of the brain was 
found as the first plane with clear blood vessels while the animal was 
gradually brought toward the objective by a stage; then different 
depths in the brain were located with a motorized actuator. Results 
corresponding to imaging depths of 0 m (0 scattering length, i.e., 
the surface), 100 m (2 to 2.4 scattering lengths), 200 m (4 to 
4.8 scattering lengths), and 300 m (6 to 7 scattering lengths) are 
shown in Fig. 4(A to D), respectively. The scattering length of brain 
tissue at the emission wavelength of 630  nm has previously been 
reported to be 42 m (18). However, here, we make a conservative 
assumption of 42 to 50 m for the scattering length calculations. 
The first column is the conventional TFM image, which was al-
ready blurry and noisy at surface due to the multiple scattering of 
forward emitted fluorescence captured by the camera. At 300 m, 
the structure of the blood vessel was nearly overwhelmed by the 
scattered photon background losing nearly all high-frequency in-
formation. The second and third columns show the reconstruc-
tion of DEEP-TFM without a prior and with a wavelet sparsity 
regularization prior. While the reconstruction without regulariza-
tion at surface is still satisfactory, the noise in the background 
increases quickly as we go deeper to 300 m. With the sparse reg-
ularization, we are able to resolve the high-resolution structures 
with good signal-to-noise ratio. Although contaminated by noise, 
the ability to reconstruct without a prior demonstrates the strength 
of DEEP compared to other single-pixel–like geometries. At sim-
ilar conditions, single-pixel geometries must rely on compressive 
sensing for reconstruction in all cases, including the surface, pre-
sented here.

DISCUSSION
A novel wide-field multiphoton microscopy approach was estab-
lished to enable fast and deep biological imaging. Both simulation 
(Fig.  1) and experimental (Figs.  3 and 4) results demonstrate the 
potential of DEEP-TFM for biological tissue and in  vivo mouse 
brain imaging. DEEP-TFM can resolve deep tissue biological images 
with similar quality to PSMPM at high resolution. Lateral resolu-
tion of DEEP-TFM is determined by the maximum resolution of 
the projected patterns and hence matches PSMPM. The results in 
Fig. 3(A1 and A2) also suggests an axial resolution improvement 
compared to TFM. Our work is consistent with prior works where 
patterned excitation has been observed to improve axial resolution 
of TFM (12, 13). However, a thorough theoretical underpinning of this 
effect remains to be developed and will represent an impor tant fu-
ture work. Beyond that, we have shown that DEEP-TFM can push 
imaging depth in scattering media down to at least 7 scattering 

Fig. 4. DEEP-TFM results of in vivo mouse brain vasculature. (A1) Wide-field 
temporal focusing two-photon microscopy (TFM) image of cortical vasculature in a 
mouse brain at the surface. (A2) DEEP-TFM image of the FOV in (A1) reconstructed 
without using wavelet sparsity regularization. (A3) DEEP-TFM image of the FOV in 
(A1) reconstructed with wavelet sparsity regularization. (B1 to B3) The TFM image 
and DEEP-TFM reconstructions of cortical vasculature at 100 m below the surface. 
(B2) is without regularization, and (B3) is with regularization. (C1 to C3) The TFM 
image and DEEP-TFM reconstructions of cortical vasculature in a mouse brain at 
200 m below the surface. (C2) is without regularization, and (C3) is with regular-
ization. (D1 to D3) the TFM image and DEEP-TFM reconstructions of cortical vascu-
lature in a mouse brain at 300 m below the surface. (D2) is without regularization, 
and (D3) is with regularization. All images were reconstructed from 256 patterns. 
Scale bars, 20 m.
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lengths, by making use of the pattern information. To the best of 
our knowledge, DEEP-TFM is currently the only computational 
wide-field multiphoton imaging method with a FOV-independent 
frame rate. Theoretically, millimeter-large FOVs at diffraction lim-
ited resolution may be achieved with no sacrifice of speed. Further, 
DEEP-TFM uniquely provides flexible, depth-dependent imaging 
speeds: Shallow imaging is almost single-shot while imaging speed 
can be customized for each depth depending on the magnitude of 
emission photon scattering. Thus, in theory, an increase in speed of 
more than three orders of magnitude over PSMPM may be achieved 
for a volume of 256 pixels by 256 pixels by 156 pixels, with the 
assumption of the same acquisition time per measurement (see 
Fig. 1). Last, DEEP-TFM satisfies all the requirements in modern 
compressive sensing theory (16). With suitable image priors, an ad-
ditional 10 times increase in speed may be achieved (see fig. S5) 
(14). Moreover, one might be able to learn specimen-specific image 
priors through learning approaches, which would outperform con-
ventional nonspecific image priors such as the wavelets sparsity.

While we have achieved reasonable successes with DEEP-TFM, 
practical applications of TFM for biomedical applications still have 
to overcome several limitations. We have demonstrated imaging 
through 7 scattering lengths in ex vivo samples while only 6 to 7 
scattering lengths in the mouse brain (18). The issue is that the max-
imum laser power that we can use in the mouse brain is much lower 
(~100 mW) due to the occurrence of vascular damage likely caused by 
hemoglobin absorption. This limitation may be overcome by shift-
ing excitation power to longer a wavelength such as 1040 nm, where 
up to 1 W excitation had been used (19, 20). Nonetheless, it is clear 
that the ultimate limitation of this approach is that increasing power 
is required to further increase FOV and imaging speed. Future work 
in optimizing this class of approaches would need to include ther-
mal modeling to determine maximum applicable power as a function 
of laser wavelength, laser repetition rate, image FOV, and specimen 
absorbance. Moreover, one may also alleviate this thermal power 
limit by reducing the laser pulse width from 120 to 10 to 20 fs since 
excitation efficiency improves linearly and quadratically for two- 
and three-photon cases, respectively. Last, patterns used here were 
of 50% fill factor; one may also investigate patterns with lower fill 
factors to reduce the total power on the sample while maintaining 
the same power per diffraction limited spot.

Besides fundamental limits due to photophysics of specimen 
damage, instrument and algorithm improvements can still drasti-
cally improve DEEP-TFM’s performance. First, the current imple-
mentation speed is limited by the frame rate of the EMCCD camera 
used. DEEP-TFM, and other similar approaches like TRAFIX, re-
quires combining information from tens to hundreds of images. 
Therefore, an important factor that can quickly degrade the final 
image’s signal-to-noise ratio is the read noise of the camera system. 
We choose a low read noise EMCCD camera for this reason, but its 
~50 to 100 Hz frame rate limits the final imaging speed. This limita-
tion can be overcome by future implementations using either inten-
sified fast complementary metal-oxide semiconductor cameras or 
avalanche photodiode arrays that have seen substantial advances 
recently. Second, since the speed of DEEP-TFM is independent of 
its FOV, its speed scales linearly with FOV. We currently use 
only ~150 m × 150 m FOV, but commercial high quality, high 
numerical aperture objectives have nearly 1000 m × 1000 m FOV 
while customized lenses have reached millimeter scale (21, 22). 
Third, same as TRAFIX, one major factor that limits the ultimate 

imaging depth is the maintenance of the illumination patterns at 
increasing depth. High-fidelity patterns can probably be formed in 
homogeneous scattering beyond 1 to 2 mm based on three-photon 
excitation. However, previous literature (12) shows that patterns are 
only able to penetrate several hundred microns in actual tissues under 
temporal focusing. The main issue is that the patterns are distorted 
because of aberration resulting from ever present sample inhomo-
geneity in biomedical specimens. Distorted patterns result in artifacts 
in the reconstructed images. In the future, specimen aberrations at 
different depths can be minimized by implementing different adap-
tive optics compensation schemes (23–26). Fourth, as discussed 
previously, many aspects of the algorithm can be optimized. We 
have demonstrated that a wavelet prior can significantly improve 
reconstruction results. However, the optimal prior will probably 
depend on the type of specimens being imaged. A more modern 
approach is to use a deep convolutional neural network (dCNN) 
trained on a specific class of specimens; this approach would learn 
an optimal reconstruction algorithm for the said class of specimens. 
Alternatively, one could train a deep generative prior, again for a 
specific class of specimen, to replace the conventional prior in the 
current optimization algorithm. We believe that these advanced 
algorithms would extend the depth range for the same number of 
patterns presented here or improve the speed by being able to 
reconstruct with a lower number of patterns. One may also note that 
the excitation pattern (random, Hadamard, and others) and its duty 
cycle may also be optimized for a specific class of specimen. Using 
deep learning tools, one could model the forward image problem 
with patterns as trainable parameters. This model can then be cas-
caded with a dCNN reconstructor, for end-to-end optimization. 
Such an approach would simultaneously learn the optimal patterns 
as well as the optimal reconstruction algorithm for a class of speci-
men. Nevertheless, despite that many aspects of DEEP-TFM can be 
further optimized, it is promising that it has demonstrated imaging 
over a larger FOV at 80 times faster speed over TRAFIX (the speed 
here is calculated with 256 patterns at exposure time of 50 ms 
per frame).

In summary, here, we present DEEP-TFM, a novel computa-
tional wide-field technology for deep tissue multiphoton microscopy. 
Our results suggest that DEEP-TFM can resolve images with similar 
quality to point scanning two-photon microscopy but in a wide-
field design. The acquisition time, therefore, is FOV independent. 
We believe that, with optimized instrumentation and algorithms, 
DEEP-TFM can accelerate volumetric multiphoton imaging by 
orders of magnitude.

MATERIALS AND METHODS
Pattern-illuminated temporally focused wide-field  
two-photon microscope
Figure 2A shows the schematic diagram of a temporal focusing 
microscope that enables arbitrary patterned illumination. First, an 
ultrafast pulsed laser beam [800-nm center wavelength, 120-fs pulse 
width, 10-kHz repetition rate, and ~8-mm beam diameter (1/e2)] 
from a regenerative amplifier (Legend Elite, Coherent, Santa Clara, 
CA, USA) was magnified to ~32 mm and directed to a DMD (DLP 
LightCrafter 9000 EVM, Texas Instruments, TX, USA). The DMD 
was used as a diffractive element and pattern generator, simultane-
ously. The beam was diffracted from the DMD with an effective 
grating period of ~190 lines/mm with an incident angle of 26.4°. 
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Arbitrary patterns could be uploaded onto the DMD using a control 
program (DLP LCR 9000 GUI) provided by Texas Instruments. The 
DMD was followed by a 4f-lens system consisting of two planoconvex 
lenses (L1; f  =  250 mm; LA1461, Thorlabs and L2; f  =  125 mm; 
AC254-125-B-ML, Thorlabs, Newton, NJ, USA), which served to 
project and magnify the image of the DMD. Then, the images 
formed by L1 and L2 were relayed onto the sample, S, through 
another tube lens (L3; f = 300 mm; AC508-300-B-ML, Thorlabs), 
and an objective lens (OBJ) (water immersion 20×/1.0, Zeiss, Jena, 
Germany). The system magnification is about 73× according to the 
focal lengths of tube lenses and the effective focal length of the 
objective lens. The geometric dispersion of the system ensured that 
the pulse width was broad enough to minimize multiphoton exci-
tation outside the sample plane. The objective location was con-
trolled with an objective piezo positioner (MIPOS-500, Piezosystem 
Jena, Jena, Germany).

The two-photon excited fluorescence from the sample, S, was 
collected by the same objective lens, OBJ, in an epi detection geom-
etry and reflected by a dichroic filter, DIO (Di03-R635-t3, Semrock, 
Rochester, NY, USA) to a camera. Then, fluorescence signals were 
imaged by another tube lens, L4 (f = 200 mm; PAC064, Newport, 
Irvine, CA, USA) onto an EMCCD camera (iXon+, Andor, Belfast, 
Northern Ireland). Another EMCCD camera (HNü 512, Nuvu 
Cameras, Montreal, Canada) was used for in vivo mouse brain 
imaging. For multicolor detection, three combinations of filter sets 
were used: blue channel centered at 460 nm (Semrock FF01-460/60-25 
and Chroma E530SP-SPC), green channel centered at 535  nm 
(Chroma ET535/70 M and Chroma ET680SP-2P8), and red channel 
centered at 605 nm (Chroma ET605/70 M and Chroma E700SP-2P). 
An achromatic doublet lens pair (1:2, MAP1050100-A, Thorlabs) 
was used to expand the image size onto the camera when DMD 
pixels of 1024 × 1024 were used for pattern generation. For patterns 
of larger pixel size (1600 × 1600), a 1:1 achromatic doublet lens pair 
(MAP107575-A, Thorlabs) was used to ensure that the image fit the 
detector size. Data from the camera were transferred using either a 
control program (Andor Solis) provided by Andor or a control program 
(NuPixel) provided by Nuvu or a control software implemented us-
ing LabVIEW 2015 (National Instruments, Austin, TX, USA).

Preparation of the calibration and the scattering samples
A thin quantum-dot layer was used for the calibration of patterns 
for the green (535 nm) and red channels (605 nm). A thin, fluores-
cent layer of green quantum dots (supplied by QD Vision, Lexington, 
MA, USA) dispersed in hexane (10 l) was dropped onto a coverslip 
(thickness, 170 m) and allowed to dry. The coverslip was affixed 
to a glass slide and sealed by transparent nail varnish. A thin 
4′,6- diamidino-2-phenylindole (DAPI) solution layer was used for 
the calibration of patterns for the blue channel (460 nm). Saturated 
DAPI solution in 1:1 mixture of deionized (DI) water and dimethyl 
sulfoxide were dropped in a preholed spacer (120 m thick, Secure- 
Seal imaging spacers, Grace Bio-Labs, OR, USA) onto a glass slide, 
and a coverslip was placed on top of the spacer. The coverslip was 
sealed using clear nail varnish.

A mixture of 4- and 10-m-sized yellow-green fluorescent beads 
(FluoSpheres Sulfate Microspheres, 4.0 m; and FluoSpheres Poly-
styrene Microspheres, 10 m; Thermo Fisher Scientific, MA, USA) 
were used to demonstrate the approach. A mixture of 4-m-sized 
and 10-m-sized yellow-green fluorescent beads was dropped in 
warm 1% agarose gel solution and stirred thoroughly. Then, 25 l of 

the mixture was dropped in a preholed spacer (120 m thick) onto 
a glass slide, and a coverslip was placed on top of the spacer. The 
coverslip was sealed using clear nail varnish. The slide was left to 
cool down before the experiment to solidify.

Preparation of mouse tissues
We used a prepared slide of sectioned mouse kidney (F24630, 
Invitrogen, Carlsbad, CA, USA) to demonstrate the utility of the 
pattern-illuminated TF. The slide contains a 16-m cryostat section 
of mouse kidney stained with Alexa Fluor 488 wheat germ aggluti-
nin (WGA), Alexa Fluor 568 phalloidin, and DAPI. While DI 
water was used as immersion medium for nonscattering case, and 
0.15% lipid solution was used as immersion medium to mimic 
scattering environment since the sectioned mouse kidney is only 
16 m thick.

Animal protocol and labeling procedure for ex vivo mouse 
muscle tissue imaging
The animal procedure (transcardial perfusion) was approved by the 
Massachusetts Institute of Technology (MIT) Committee on Ani-
mal Care and meets the National Institutes of Health (NIH) guide-
lines for the care and use of vertebrate animals. Mice were deeply 
anesthetized with 1.25% avertin solution (350 mg/kg intraperitoneal) 
and transcardially perfused with phosphate-buffered saline (PBS) 
containing 4% paraformaldehyde. After perfusion, thigh muscle 
was excised and postfixed in 4% paraformaldehyde overnight. Mus-
cle tissue was cryoprotected in 30% sucrose for 48 hours, embedded 
in optimal cutting temperature formulation (Tissue-Tek), frozen 
at −20°C, and sliced at a thickness of 200 m on a cryostat. Frozen 
sections were immersed in PBS for staining. Solutions of Alexa Fluor 
568 Phalloidin (Invitrogen, catalog number A12380) and Hoechst 
33342 (Invitrogen, catalog number H21492) were prepared as 
follows: The entire contents of the 300-U vial of Alexa Fluor 568 
Phalloidin was dissolved in methanol (1.5 ml) to produce a 40x 
stock solution, which was diluted 1:40 in PBS for staining. A Hoechst 
stock solution was prepared by dissolving Hoechst in water at a 
concentration of 10 mg/ml. The Hoechst stock solution was diluted 
1:2000 in PBS for a final concentration of 5 g/ml for staining. Muscle 
slices were permeabilized in a solution of 1% Triton X-100 in PBS 
for 20  min at room temperature with gentle shaking. Slices were 
then incubated in a working solution of the dyes (dissolved in PBS 
as described above) for 20  min at room temperature with gentle 
shaking. Excess dye was removed by washing slices in PBS three 
times (6 min per wash, with gentle shaking at room temperature). 
Slices were then mounted on slides using Fluoromount-G or Vecta-
shield as mounting media. Slides were coverslipped, and slides con-
taining Vectashield as the mounting medium were sealed along the 
edges of the coverslip with clear nail polish. Slides were allowed to 
dry for at least 48 hours before imaging.

Surgical procedure and in vivo mouse neural vascular 
imaging preparation
Experiments were carried out under protocols approved by MIT’s 
Animal Care and Use Committee and conformed to NIH guide-
lines. All data in this study were collected from adult (>8 weeks old) 
mice of either sex. The mice were wild type and acquired from the 
Jackson laboratory (#000664). Mice were initially anesthetized with 
4% isoflurane in oxygen and maintained on 1.5 to 2% isoflurane 
throughout the surgery. Buprenorphine (1 mg/kg, subcutaneous) and/or 
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meloxicam (1 mg/kg, subcutaneous) was administered preoperatively 
and every 24 hours for 3 days to reduce inflammation. Ophthalmic 
ointment was used to protect the animal’s eyes during the surgery. 
Body temperature was maintained at 37.5°C with a heating pad. 
The scalp overlying the dorsal skull was sanitized and removed. The 
periosteum was removed with a scalpel and a craniotomy (5 mm) 
was made over the primary visual cortex (V1, 4.2  mm posterior, 
3.0 mm lateral to Bregma) on either the left or right hemisphere, 
leaving the dura intact. For calcium imaging, a circular cover glass 
(3 mm; Warner Instruments) was implanted over the craniotomy as 
a cranial window and sealed with dental acrylic (C&B-Metabond, 
Parkell) mixed with black ink to reduce light transmission. Last, a 
custom-designed stainless steel head plate (eMachineShop.com) 
was affixed to the skull using dental acrylic. Experiments were per-
formed at least 5 days after head plate implantation to allow animals 
to recover. For labeling blood vessels with a fluorescent dye, a 
rhodamine + dextran dye (70 kDa; D1841, Thermo Fisher Scientific) 
mixed with saline solution at 5% (w/v) concentration was applied 
retroorbitally with 100-l volume (27). During the retroorbital in-
jection, the animal was anesthetized with 2% isoflurane in oxygen. 
During multiphoton imaging, the animal was anesthesized with 
ketamine + xylazine mixture with 0.1-ml volume, and this mixture 
was applied as needed after checking the reflexes. The imaging ses-
sions lasted for a maximum of 2 hours.

Pattern design and projection
A random or a randomized block Hadamard–patterned image 
[similar to (28)] set was generated using MATLAB. To get the ran-
domized block Hadamard patterns, a Hadamard matrix of size Nt × 
Nt was first created (here Nt is the number of patterns). Each row of 
the matrix was then used to generate a replicating block (see fig. S8). 
To generate the full pattern, the blocks were tessellated to maximize 
the distance between repeating time series–patterned pixels (see fig. 
S8B). Then, the resulting full patterns were multiplied with the 
same fully random mask (of +1s and −1s) to get the randomized 
block Hadamard–patterned image set (see a representative pattern 
in fig. S8C). In beads and mouse kidney experiments, patterns of 
1024 × 1024 pixels resized by a factor of 8 were used for excitation 
patterns. This combination defines the unit block of 8 × 8 pixels at 
the DMD, which corresponds to 60.8 m for the length of one side. 
The corresponding size of the unit block at the sample plane is 
0.83 m, which is close to the effective diffraction limit of the system 
[/(2NA2)]. The total number of patterns for each imaging session was 
256 for a complete basis set. For mouse muscle imaging, patterns of 
1600 × 1600 pixels at the DMD were used to enlarge the FOV of the 
system with the modification of a magnifying lens compound in 
front of the EMCCD camera. The exposure time of the camera was 
adjusted in the range of 100 to 500 ms per pattern depending on the 
signal intensity of the specimen. The electron multiplying (EM) 
gain of the camera was set to be 3 to 100 depending on the signal 
intensity of the specimen as well.

DEEP-TFM mathematical model and image 
reconstruction technique
Mathematically, the DEEP-TFM imaging process can be modeled 
by the following equation

   Y  t  (x, y) = sPSF(x, y) * {([exPSF(x, y) *    ̃  H    t  (x, y)]) ∘ X(x, y)}  (1)

Here, x and y are spatial coordinates; t is modulation pattern’s 
(and acquired image’s) index; exPSF(x, y) is the excitation point 
spread function (assumed known); sPSF(x, y) is the scattering point 
spread function; and     ̃  H    t  (x, y)  is the tth modulation pattern project-
ed by the DMD. X(x, y) is the object being imaged, and Yt(x, y) is the 
tth image acquired on the camera. The operators * and ∘ represent 
spatial convolution and pixel wise multiplication (see section S1 for 
more details). Writing 1 in the spatial Fourier domain we get

 ℱ Y  t  (kx, ky ) = ℱsPSF(kx, ky) ∘ {[ℱexPSF(kx, ky) ∘ ℱ    ̃  H    t  (kx, ky)] *  
                        ℱX(kx, ky)}   (2)

Assuming N pixels (both in the image, Yt, and the object, X), the 
above equation has 2N unknowns (N in ℱX and N in ℱsPSF). As 
written, each measurement (i.e., an image taken at time point t) ap-
pears to provide N equations. However, ℱsPSF acts as a low-pass 
filter and for out-band frequencies (out of the frequency support of 
ℱsPSF) the right-hand side of the 2 is zero. Now, assume that 
ℱsPSF’s frequency support has M pixels. Then, each measurement 
provides M independent equations. Thus, for the above system of 
equations to be solvable, we need Nt > 2N/M measurements. For 
deep tissue imaging applications, the frequency support of ℱsPSF 
changes with imaging depth. As there is negligible scattering at the 
surface, at the surface M~N; we only need Nt = O(1) measurements 
[here “O(. )” represents the asymptotic “big-O” notation] at very 
deep frames where there is no spatial information on the recorded 
images, M~1. We hence need Nt = O(N) measurements. Please also 
note that because of the frequency domain convolution between 
 ℱ    ̃  H    t    and ℱX (2) out-band frequencies (of the frequency support of 
ℱsPSF) in X are still sampled on to Yt as long as  ℱ  ̃  H    captures all 
possible frequencies of X. It can be shown that a random pattern 
of    ̃  H    satisfies this criterion (see fig. S2 and section S2). Thus, an 
ensemble of O(2N/M) random patterns  {   ̃  H    t  } , can be used to fully 
measure X in DEEP-TFM (see section S2 for a detailed description). 
Upon such measurement, we record an ensemble of {Yt} images 
corresponding to  {   ̃  H    t  } ; X can be reconstructed using, {Yt} and {Ht}, 
by solving Eq. 1 or its corresponding frequency domain representa-
tion, i.e., 2.

The calibration experiment gives the ensemble of patterns,  {   ̃  H    t  } , 
used to modulate spatial features. The imaging experiment gives the 
ensemble of measurement images, {Yt}. Therefore, the reconstruc-
tion of the de-scattered image, X, is possible from solving the set of 
Eq. 1 equations (or the set of 2 equations). However, the constituting 
set of equations in Eq. 1 (and its corresponding frequency domain 
form in 2) are not linear but quadratic with respect to the unknowns 
(X and sPSF). To solve this system, one could first assume a form 
for sPSF, and then the Eq. 1 becomes a linear system that can be 
solved for X with commonly available linear optimization methods. 
When a solution for X is found that can be substituted in 2 which 
makes a similar linear system that can be solved for ℱsPSF (and 
hence for sPSF). Thus, a proper solution for X can be iteratively 
found. For the results shown in this paper, we only performed one 
iteration assuming a canonical form for sPSF, which resulted in visu-
ally accurate reconstructions. We used two-step iterative shrinkage/
thresholding algorithm (TwIST) (29) or CVX (30, 31) (a package 
for specifying and solving convex programs) to solve the above 
linear equations. Please refer to Supplementary text for a detailed 
description of the problem formulation.
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SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/28/eaay5496/DC1
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