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ABSTRACT Interpretation of neural signals to a form that is as intelligible as speech facilitates the
development of communication mediums for the otherwise speech/motor-impaired individuals. Speech
perception, production, and imagination often constitute phases of human communication. The primary goal
of this article is to analyze the similarity between these three phases by studying electroencephalogram(EEG)
patterns across these modalities, in order to establish their usefulness for brain computer interfaces. Neural
decoding of speech using such non-invasive techniques necessitates the optimal choice of signal analysis and
translation protocols. By employing selection-by-exclusion based temporal modeling algorithms, we dis-
cover fundamental syllable-like units that reveal similar set of signal signatures across all the three phases.
Significantly higher than chance accuracies are recorded for single trial multi-unit EEG classification using
machine learning approaches over three datasets across 30 subjects. Repeatability and subject independence
tests performed at every step of the analysis further strengthens the findings and holds promise for translating
brain signals to speech non-invasively.

INDEX TERMS Assistive technology, brain computer interface, EEG, imagined speech, speech-EEG
correlation, unit classification.

I. INTRODUCTION
The growth of modern computing technologies coupled with
the understanding of the human brain have led to the evolu-
tion of promising Brain Computer Interfaces (BCIs) [1], [2].
BCIs provide a way to observe neural signals and convert
the same to an actionable output. The potential to manipu-
late machinery with nothing more than a thought facilitates
severelymotor-disabled people to function independently [3],
[4]. Given the limitless applications of converting neural
signals to computerized actions, improving the quality and
robustness of BCI systems to suit and serve the specific needs
of each user is important.

Neuronal signals can be collected for experimentation by
invasive (Neurosurgery), semi-invasive (Electrocorticogram
(ECoG)) and non-invasive (Electroencephalogram (EEG),
Magnetoencephalogram (MEG)) methods as reported exten-
sively in the literature [5]. Since invasive electrodes are
implanted directly in the brain, they are risky and expensive
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and also pose a hindrance to the process of data collection
for the purpose of experimentation. Advances in accurate
and easily deployable non-invasive EEG systems, including
those that can communicate with smartphones via Bluetooth,
and the relative ease of integration with other technologies
suggests that EEG is likely to become a popular choice for
building BCIs [6], [7]. Additionally, EEG signals offer high
temporal resolution, while their poor spatial resolution is
addressable by increasing the number of sensors [8], [9].
In this study, we describe use of the EEG to interpret electrical
activity in the brain by means of recorded surface potentials
on the scalp of the human subjects.

Although the fundamental principles behind BCIs using
EEG are well established, there exist several drawbacks [10].
Among these, a few significant ones are discussed below.
The EEG signal records the electrical potentials from the
surface of the scalp which is distant from the source, and
thus exhibits poor signal to noise ratio. Further, any involun-
tary muscular movement affects the EEG signal significantly.
Albeit these cons, EEG-based BCIs still possess comforting
prospects because of their noninvasive nature, convenience of
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recording, and potent applications as a communication
medium for speech and motor-impaired individuals.

The organization of the paper is outlined below. The moti-
vation behind the analysis of EEG signals related to speech,
previous works on speech based neural signal analysis, and
our contribution are summarized in the remainder of this
section. The details of the methods used for classification
are detailed in Section II. Section III describes the EEG data
collection process, the different data-sets used for analysis,
and their specifics. The general experimental setup and the
features used are outlined in Section IV. The experimental
results and discussions are presented in Section V, which is
followed by Section VI which reviews some control checks
to validate the various protocols employed in this work.
Finally, Section VII concludes the work described in this
article.

A. MOTIVATION
Most often, using BCIs to communicate with external devices
requires the subject to perform conversation-irrelevant arti-
ficial tasks such as motor imagery [11], mental calcula-
tions [12], and so on. High accuracy BCI systems are also
modeled based on P300 responses and steady state visu-
ally evoked potentials (SSVEP) [13]–[15]. Inconvenience of
usage aside, the use of motor/mental actions for classifi-
cation, severely restricts the number of events that can be
represented. Research has shown that the brain has specific
areas that are responsible for language understanding, speech
comprehension, interpretation of meaning, and forming asso-
ciations of sounds [16]–[18]. Although significant work has
been done to model human speech comprehension abilities,
it has been difficult to utilize this information for non-invasive
computing purposes. In this work, we aim to investigate the
reliability of speech-induced EEG signals in discriminating
between distinct speech-like units in EEG. Three different
phases of speech-EEG interaction, namely, speaking, listen-
ing, and imagining speech, are considered for the same.While
speech imagination and production based interfaces possess
high applicability for device control, inspecting the audition
phase helps gain a better understanding of detectable neural
processing units.

B. RELATED WORK: CO-SPEECH NEURAL SIGNALS
Despite disparities in the nature of Speech and EEG signals,
there exist significant similarities of interest. Both speech
and EEG signals are rich in temporal content and have high
domain specificity in terms of speaker and subject influ-
ence respectively. In view of these similarities, numerous
studies have outlined the existence of speech signatures in
EEG by studying the correlation between speech envelopes
and EEG envelopes [19], [20]. The high correlation reported
between the audio speech envelopes and the reconstructed
EEG-speech envelopes suggests that speech related signa-
tures are present in EEG. Across different experimental
perspectives/protocols such as followed in [19], [21], with
differing input stimuli, good reconstruction accuracies are

reported. These results thereby provide the primary support
to explore the possibility of reconstructing speech from EEG.
Many invasive electrode recording methods also suggest the
dominant influence of speech on brain waves. The work
presented in [22] specifically aims to reconstruct speech
from neural ECoG recordings at a rate comparable to nat-
ural speech production rate. While [23], [24] study pas-
sive listening, [22] looks at speech production and miming.
Non-invasive alternatives offering good temporal resolution
such as EEG thus serve as better choices to model communi-
cation interfaces.

There have also been recent research advances aiming
to classify real speech or imagined speech EEG units.
Many works on the KARA ONE database attempt binary
classification [25], [26] and 11-unit classification [27] with
a maximum reported accuracy of 87% and 53% respec-
tively. This database however, comprises isolated speech
units played to the subjects or imagined by the subject as
opposed to continuous conversational speech. Most of the
works in the literature are based on a two-class problem [28],
[29]. When a multi-class framework is considered, a signifi-
cant decrease in performance is observed [30], [31]. Thework
proposed in this article not only addresses the multi-class
problem but also considers continuous speech.

C. CONTRIBUTION
The objective of this article is to look for signatures of the
fundamental units of speech (if any), in coherent-speech
(co-speech) EEG signals. We collectively refer to the EEG
signals collected when the subject is producing, listen-
ing, and imagining speech as co-speech EEG signals. The
novel contributions of this study and how they are different
from the work done previously in this domain are outlined
below:
• Previous works have attempted imagined isolated
speech-unit classification [28], [29], [31], spoken speech
classification [30] and heard speech envelope correla-
tion analysis [19], [20]. This work attempts to com-
pare speech-unit classification across all three different
phases of co-speech EEG, namely, imagination, percep-
tion, and production.

• Work so far considered either syllable-level, vowel-
level, word-level, or phrase-level classification. Here a
level-wise base unit selection is performed to best rep-
resent co-speech EEG classification in the three phases.

• A majority of the unit classification efforts so far have
been defined as a binary isolated-unit classification
problems. Our work presents a multi-class formulation
for continuous conversational speech with a maximum
of 54 classes in consideration.

• Features across different brain frequency bands and elec-
trode cap regions are analyzed across five different types
of Datasets.

• Unit classification and visualization of temporal unit
structures are done across subjects and across sessions
to investigate generalization.
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• In addition to result-based experimentation, a variety
of control checks are performed to validate the imple-
mented protocols.

II. METHODS
As EEG is a time-varying signal and has good tempo-
ral resolution, two different machine learning approaches,
namely, two level dynamic programming and Gaussian mix-
ture based hidden Markov models, were considered to match
temporal patterns. These classification-oriented protocols are
built with the intention of recognizing units of speech from
recorded brain signals.

A. COMMON WORD REFERENCE TEMPLATE BASED TWO
LEVEL DYNAMIC PROGRAMMING
The Common Word Reference Template matching algo-
rithm along with a two level dynamic programming protocol
(CWRT-2LDP) proposed by the authors in [32] was imple-
mented. A series of functional blocks, as shown in Figure 1
were involved in implementing this protocol.

FIGURE 1. CWRT based 2LDP: a, Block 1,2 EEG data initial segmentation
using manual markers obtained from the input/output speech signals,
followed by iterative boundary correction. a, Block 1-sup Explanation of
varying templates per class. a, Block 3,4 CED Algorithm to make all the
templates equilength. a, Block 5 Average across the equilength templates
to obtain the class-wise BRT. b, 2LDP distance score calculation c,
Allocation of class labels.

Block 1(Initialization) - Boundary Segmentation:
Since we cannot determine the detailed ground truth

boundaries for EEG, we followed a manual transcription

based marking for segmentation. The speech input/output
waveform and its corresponding EEG time aligned signal
was imported in audacity and a label file was created to
mark the unit-labels occurring in the speech waveform. The
speech waveform is segmented unit-wise manually and the
respective label files with their time stamps are saved. These
time segments are then extracted from the 128 channel EEG
data and assigned to their respective labels, thus giving us
unit-level EEG segments. We segmented the hearing phase
EEG data using markers from the corresponding input speech
signal. The speaking phase EEG data for each trial was
segmented using markers from the recorded speech output
waveforms. The initial segmentation for the imagine-EEG
data was done in a flat-start fashion by dividing the signal into
equilength portions according to the number of constituent
units (after verifying the manual mouse clicks by the subject
to ensure that the subject had indeed imagined during the
specific period).

Consider a dataset containing Q unique units. Distinct
input cue sentences comprised of these units were formed
in such a way that the units occurred in different contexts.
Given that multiple speakers recorded the same set of cues,
the segments of a specific unit occurring in the same sen-
tence varied in duration depending on the speaker’s rate of
speech(Block 1-sup). Let’s assume, the unit belonging to
qth class, where 1 ≤ q ≤ Q, occurred in Nq instances
(speakers × sentences, disregarding inter-sentence repeti-
tions). Initial segmentation in this case, contributes Nq tem-
plate segments of varying contexts and duration to the qth

class as shown in Block 1. These are clubbed together in the
form of a cell array, Uq.

Block 2(Iteration) - Boundary Correction and Mean
template:

Post speech-referenced segmentation, an iterative bound-
ary correction algorithm is implemented as shown in Block 2.
An initial Mean Template(MT Iq ) is chosen per class among
the ‘Nq’ segments of cellUq. ThisMT Iq is the template with a
length closest to the average length of all the ‘Nq’ templates.
If ln denoted the length of the nth segment, where 1 ≤ n ≤ Nq,
then

lµ = (
Nq∑
n=1

ln)/Nq ; d = argmin1≤n≤Nq
∣∣lµ − ln∣∣ (1)

MT Iq = Uq{d} (2)

Once MT Iq s were obtained, an iterative algorithm to
self-adjust the boundaries was performed as described in
Algorithm 1. The number of iterations was set empirically
for each dataset. The inputs to the algorithm were the cell
arrays(Uq) and the outputs were boundary adjusted(NUq) cell
arrays. Now, from the outputNUq cell arrays, we chose a final
mean template(MT Fq ) per class, as the template with length
closest to the average length of all templates in NUq.

Block 3,4,5 - CWRT using Compress Expand Dynamic
Time Warping(CED) Algorithm:
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Algorithm 1 Iterative Boundary Adjustment

Input: Cell arrays Uq, with Nq templates each,MT Iq
Prior: Sentence_cell: A cell array of input cue sentences
Output: NUq
For each t=1:max-iterations do

For each s=1:total-sentences do
sen=Sentence_cell{s};
ind= sequential array of unit indices(∈ 1 : Q) in sen
concat: ConcatenateMT Ik |k∈ind , in sequence order
warp-path = DTW(concat, sen)
For each j=1:length(ind) do
S{j} = re-segment sen using warp-path
NUind(j){count} =S{j}; count ++

end for
end for
MT Iq= Compute mean templates of NUq

end for

The cross-word reference template (CWRT) matching
method as described in [33] was implemented to obtain one
reference template from the many training templates across
trials. To best represent every class, we need to unify the
information contributed by every train instance to the par-
ticular class q. Owing to unequal lengths of segments in
NUq, we performed a CED method to make all segments
equilength to facilitate averaging across trials. Consider the
class q with Nq varying length templates and final mean
template MT Fq . A CED algorithm is performed between
MT Fq and every other (Nq-1) templates as shown in Block 3.
When given a pair of input templates, the CED algorithm
works as described in Block 4. The horizontal warp paths
are collapsed by taking average of the frames in the path
(avg(A1 to A2)),(avg(A3 to A4)). In vertical warp paths,
the particular frame is replicated (M2−M1) times. For diag-
onal warp path, the frames are kept as such. Hence, the CED
algorithm yieldsNq templates of the same length as its output.
Now Block 5 computes the average across all the equilength
templates of a particular unit class to obtain the class’s best
reference template(BRT).

Once the final templates post CWRT are obtained, a two
level dynamic programming based classifier was devised as
follows to classify test segments. Given the test signal, Ts and
the final BRTs Rq ofQ unit classes where 1 ≤ q ≤ Q, a 2LDP
as discussed in [32], [34], [35] is performed. Depending on
the length Lq of each Rq, a range of end frames Eq is set as
b+ Lq

2 ≤ e ≤ b+ 2Lq, where b denotes the beginning frame
and e the end frame in Ts. Then, a matrix of distance based
scores S̄, is formulated for every pair of beginning frame b
and ending frame e ∈ Eq as follows:

Ŝ(Rq, b, e)= dtw-distance-measure(Rq,Ts(b : e)) (3)

S̃(b, e)= min
1≤q≤Q

[̂S(Rq, b, e)]: retain best template match

(4)

P̃I (b, e)= argmin
1≤q≤Q

[̂S(Rq, b, e)]: retain best path index (5)

S̄(e)= min
1≤b<e

[̃S(b, e)+S̄(b−1)]: recursive accumulation

(6)

Keeping S̄ as evidence of template match, backtracking of
the path using P̃I is performed to obtain the best sequence of
labels that transcribe the EEG corresponding to speech.

B. GMM HMM
A time tested and robust classification model for speech
is the Gaussian Mixture Model - Hidden Markov Model
(GMM-HMM) [36], more recently replaced by Deep Neu-
ral Network(DNN)-HMM models. HMM based models are
gaining popularity in the domain of neural signals as well
[37], [38]. Considering the data sparsity of EEG data,
a GMM-HMM framework was considered for classifica-
tion. Gaussian Mixture Model is a clustering algorithm that
groups similar data points together based on their attributes
or features and models the means and variances of these
clusters. GMMs are probabilistic models and use soft clus-
tering to assign data to each of the clusters. An Expectation
Maximization(EM) algorithm is followed to estimate these
parameters for each of the classes under consideration. Since
each data point is considered independent of the others in
a GMM, we incorporated an HMM based model to better
capture the temporal statistics. HMMs provide a simple and
efficient framework for modeling time-varying sequences by
defining hidden states and their transition probabilities. Baum
Welch training algorithm based on EM is used for training the
HMMs for every class. They also facilitate context modelling
that uses information about which unit is likely to occur in
the context of another unit as opposed to the independent
mono-unit modeling. Alongside mono-unit, tri-unit models
which club left and right context units along with the unit
under consideration to form standalone data instances can
also be trained.

III. DATA COLLECTION AND DATABASES
This study is based on the data obtained from exper-
iments conducted using three different elicitation proto-
cols. The timeline of the experiments used to collect these
datasets, referred as DS1, DS2, and DS3 respectively,
are depicted in Figure 2. The Ethics Committee of the
Indian Institute of Technology Madras approved this study
(IEC/2018-03/HAM/09). All the subjects were informed
about the aim and scope of the experiment, and a written
consent was obtained to collect the data. Experiments were
designed to collect EEG data in an acoustically isolated
an-echoic chamber. A 128 channel HydroCel Geodesic Sen-
sor net 130 was used with Cz as the reference. The sam-
pling rate for obtaining EEG data was set at 250 Hz, and
sensors’ impedance were continuously monitored. Speech
stimuli presented in the experiments were recorded in a
sound-attenuated room by non-native male and female speak-
ers of English. The speech was conversational-like and
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FIGURE 2. Datasets timeline description Inputs to DS1 are 2 sentences
sa1: ‘‘she had your dark suit in greasy wash water all year’’ and sa2: ‘‘Dont
ask me to carry an oily rag like that. These in totality constitute 25 syllabic
units. The inputs for DS2 are formed from this set of syllables; i.e. ‘‘Dont
rag me’’, ‘‘Carry your suit’’, ‘‘Ask like that’’ and so on. Inputs for DS3 are
daily-use sentences like ‘‘Get me some food’’, ‘‘Thank you’’ and so on.
Every experiment had a beginning and ending resting state of 60 seconds.

continuous, with no prolonged pauses. Each speech stimuli
was presented multiple times in a session with a randomized
presentation order using external speakers.

A non-overlapping set of 12, 9, and 9 subjects volunteered
for the collection of dataset 1(DS1), 2(DS2), and 3(DS3)
respectively. The total number of subjects in all the experi-
ments is 30. All the subjects had good language proficiency
in Indian English. The subjects (approximately 2:1 ratio of
men and women) were healthy non-native English speakers
between 25-34 years of age. The subjects were seated com-
fortably and were instructed to keep their eyes closed and
minimize other voluntary movements throughout the exper-
iment. Although this is not natural, the objective was to set
up controls with minimal intervention due to artifacts in the
EEG signals. Prior to the actual recording sessions, subjects
were given an initial acclimatization session wherein few
mock trials were performed. Once the subject was trained and
comfortable with the elicitation protocol, he/she participated
in one or two evaluation sessions where they were asked to
complete the experimental task(s). Performance statistics are
recorded and analysed individually for each subject-session
pair and across sessions and subjects. Three experiments were
designed to observe co-speech EEG influence, the details of
which are summarized below. Table 1 briefly lists the purpose
behind collecting each Dataset and the concerns it addresses.

A. DATASET 1
12 subjects volunteered for the collection of this dataset, out
of which 6 subjects gave 2 sessions each on different days.
Here two standard TIMIT sentences sa1 and sa2, spoken by
5 speakers(1 female and 4 males) were played to the subject
multiple times in a randomized fashion while the subject
was passively listening. These sentences together comprise
of 25 syllabic units.

B. DATASET 2
EEG data was collected from 9 subjects with 3 subjects
providing 2 sessions each on different days. Each sentence

TABLE 1. Purpose of collecting each Dataset.

and phrase used as input stimulus for data collection is drafted
using a combination of a subset of the 25 syllables from
the syllabic content of sa1 and sa2. A total of 25 such
sentences were played randomly to the subject. The prompts
were spoken by one female and one male volunteer. The
25 sentences played once constituted one trial and 3 such
trials were recorded in one recording session. To differentiate
between the different phases of speech-based cognition in this
dataset, we define DS2a as the hearing phase, DS2b as the
imagining phase, and DS2c as the speaking phase.

1) Hearing Phase (H): Here, the subject is required to
perform passive listeningwhen exposed to speech stim-
uli. The subject is requested to pay attention to what is
being played.

2) Imagination Phase (P): Here, the subject is
instructed to imagine speaking the prompt(sub-
vocalize). Sub-vocalizing or silent speech is the act
of saying words in your head without any articulatory
or phonatory muscular movements. While this form
of internal speech is typically common while reading,
here we assume it to be a form of imagined speech.

3) Speaking phase (S): Here, the subject is required to
verbally repeat the sentence/phrase that was played.
The subject is specifically instructed to speak with clar-
ity and poise while minimizing other head movements.
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Since ’Imagining’ and ’Speaking’ duration vary depending
on the linguistic proficiency of the subject, a mechanism
of manual mouse click is adopted. Every subject is asked
to indicate with a mouse click the end of his/her imagin-
ing/speaking response. The audio spoken by the subjects is
also recorded using a recording device to be used for initial
level segmentation and to playback and discard mistakenly
spoken trials.

C. DATASET 3
EEG data was collected from 9 subjects, 2 sessions each on
different days. A set of most commonly used English words
were shortlisted and sentences based on these words were
drafted to be played as the input speech stimuli. One male and
one female speaker were chosen to record the audio inputs.
The syllabic content of these spoken sentences contained
54 syllables, which were then combined to form distinct
words. A set of 64 sentences so formed was repeated twice
in a single session.

IV. GENERAL EXPERIMENTAL SET-UP
A. PRE-PROCESSING
After obtaining the EEG data, we band-passed the signal
between 0.3 Hz and 60 Hz to retain the frequencies that
contain relevant information and also applied a notch at 50 Hz
to discard AC interference. Common average reference over
all electrodes was applied offline post data collection. Tri-
als containing subject induced artifacts(mean ≈5 trials per
subject) were visually monitored and discarded for exper-
imentation purposes. Other stereotypical artifacts includ-
ing electromyographic ones were corrected using runica of
EEGLAB, as applied in works dealing with similar objectives
[39], [40]. Post this, data was segmented with the help of
flags distinctly set to mark sentences’ beginnings and ends
as can be seen in Figure 3. Each flag, four characters long,
is associated with a unique sentence ID. A mapping file is
created apriori, which matched the flags with the sentence
being played, imagined, or spoken. This mapping file is
then used to match the segmented EEG time-sections with
the corresponding sentence’ text. The segments so obtained

FIGURE 3. Flag Setting description for Dataset 2(an example time chunk):
The first character of the flag indicates the action being performed;
Hearing(H), Speaking(S), Imagining(P). The next 2 characters hold the
unique sentence ID(01-25/64). The last character indicates the
beginning(S) or end(E) of the action.

FIGURE 4. Region-wise mapping of electrodes- F: Frontal, T: Temporal, P:
Parietal.

after mapping are considered as independent trials for train-
ing/classification.

As the literature claims that different bands of frequen-
cies correspond to different forms of cognition, the EEG
signals were further bandpass filtered into delta(0.3-3Hz),
theta(3-8Hz), alpha(8-13Hz), beta(13-30Hz) and gamma
(30-50Hz) bands for analysis. A Beta-Gamma band
(13-39Hz) is additionally bandpass filtered. The filters used
for the above are second-order Butterworth bandpass filters.
Channels corresponding to specific areas in the electrode cap,
as depicted in Figure 4, are also extracted.

B. FEATURE EXTRACTION
EEG feature extraction and signal decomposition schemes
characterize the signal as a function of time and/or frequency
[41]–[43]. The classification objective and the nature of data
involved highly influence the optimal choice of features.
Based on the analysis results of speech-EEG classification
presented in [32], temporal features based on short term
energy are chosen for this work. This is further motivated
by measurements on EEG that suggest that the resolution
decreases as we move from temporal to spectral to spatial
domains [44]–[46].

Short term processing is particularly meaningful while
dealing with time-varying signals like speech and EEGwhere
we assume fixed properties in a finite short-term temporal
block [47], [48]. The Short term Energy (STE) is calculated
as given in Equation 7, where ‘‘xi’’ is the input EEG signal of
length ‘‘N ’’ samples, ‘‘h’’ is the Hamming window function
of length 125 samples and ‘‘m’’ is the time shift of 1 sample.

Em =
N∑
n=1

[xi[n]h[m− n]]2 (7)
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TABLE 2. Comparison of classification absolute accuracy in (%) for different BUs (36 channels, 0.3-50Hz, STE, 2LDP); CA: Chance Accuracy given by
(1/(number of classes))*100; LU: like-unit; Avg Acc: Average Accuracy (%) across all subjects’ data available for that dataset. (*): In Dataset 1, there is a
sentence-level class bias. Since this dataset comprises of only 2 sentences, the sentence level classification module seems to perform the best. Contrary
to this, in multi-sentence unbiased datasets, sentence-level modelling does not perform best. (**): Phrase-level and sentence-level accuracies are close
for dataset 2 and 3 as these mostly comprise of single phrasal sentences.

The extracted STE at a particular time instant is a
C-dimensional feature vector, where ‘C’ indicates the num-
ber of channels extracted during pre-processing. All the
experiments discussed hereafter use this STE feature extrac-
tion module to generate EEG features for classification.

C. INTER-INTRA EVALUATION
High EEG-based subject classification accuracies [49], [50]
imply the existence of significant variability in EEG signals
while different subjects perform the same task. Since our
datasets involve multiple sessions and subjects, the variability
induced by them needs to be addressed. Hence, we define the
following three testing strategies:

1) Intra-subject + Intra-session (Case A): Disjoint sets of
train and test are taken from a single session of a single
subject.

2) Intra-subject+ Inter-session (Case B): Training is done
on one session and testing on another session of the
same subject.

3) Inter-subject (Case C): Training is done on data belong-
ing to one subject and the model is tested on another
subject’s data.

The results of all the experiments reported unless
otherwise specified are accuracies averaged over case A
(for single-session subjects) and case B (for multi-session
subjects).

D. PERFORMANCE METRIC AND DATA PREPARATION
The classification accuracy is taken to be 1 − UER, where
UER is the unit error rate. It is calculated by taking into
account the number of Insertions(I), Substitutions(S), and
Deletions(D) in the decoded output as compared to the
ground truth.When an extra unit occurs in the decoded output
between two existing in the ground truth, it is termed as an
insertion. When a unit in the ground truth is replaced by
another unit in the decoded output, it is termed a substitution.
When a unit in the ground truth does not appear in the
decoded output, it is counted as a deletion. The UER is hence
calculated as given in Equation 8.

UER(%) =
(I + S + D)

Total number of units
(8)

The central objective of this study is to investigate if
EEG signals can enable the development of robust BCIs.

To address this question, an extensive set of experiments were
performed. All the intra-subject experiments henceforth con-
sidered a 4-fold cross validation approach(disjoint set of 75%
for training and 25% for testing in each fold) and attempted
single trial EEG decoding. For inter-subject(/session) reports,
K -fold cross validation is performed, where K is the number
of subjects(/sessions per subject) in that particular dataset.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. UNIT OF ANALYSIS - SELECTION OF BASIC UNIT (BU)
The primary step towards co-speech EEG recognition is to
determine the units of speech processing in the brain, which
are best recognized in a BCI set-up. For speech recognition,
the basic unit of recognition is chosen as a phoneme, which
is considered as the smallest single meaning-bearing unit of
speech perceptible to the listener. Words, phrases, and sen-
tences are then considered as a sequence of phonemes. Here
we tried to classify EEG signals in syllable, word, phrase, and
sentence levels to discern the best performing base unit(BU).
Since the underlying cognitive decoding process is still not
fully understood, we consider the possibility that the unit
of auditory speech-stimuli might not be directly reflected
in the measured EEG. Hence, if we assume Y to be a unit
in speech under consideration, we propose a corresponding
Y-like-unit(YLU) in EEG. Since the experimental framework
published in [32] is established, a similar implementation
was followed here considering the 36 channels belonging
to the temporal and parietal regions, but without frequency
band filtering. The classification results for all datasets using
STE features in the 2LDP framework for all BUs under
consideration are presented in Table 2. Results indicate that
syllable-like-unit(SLU) classification yields the best perfor-
mance across unbiased datasets. Taking note of this, we fixed
SLU as the best BU for classification for the experiments that
follow hereafter.

B. REGION-BAND ANALYSIS
Different regions of the human brain are responsible for
specific cognitive functions [16], [18]. Since this work
deals with non-invasive EEG signals, we intend to analyze
specific regions in the electrode cap to determine which
regions yield superior discriminative properties. Analogous
to region-wise functional distinctions, specific frequency
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FIGURE 5. Region-Band Analysis: Pair-wise combinations of electrode cap regions and frequency bands are extracted and used to perform SLU unit
classification for all Datasets using the 2LDP classification framework.

bands are seen to be dominant(in terms of energy) during
certain cognitive states/actions. Many studies have shown
that speech rhythms are captured as rhythmic modulations
in the human auditory cortex [51], [52]. Hence, we focus on
brain oscillations (bands) in subjects as they process contin-
uous speech. Frequencies in the range 0.3 to 8Hz form the
delta-theta band. This band is said to capture the perceived,
non-speech-specific acoustic rhythm and syllabic rate [51],
[52]. The beta band activity corresponds to 13 to 30Hz and is
dominant when subjects are consciously reading, writing, and
comprehending. In the literature, beta band also plays a part
in high-level speech comprehension [53]. Frequencies in the
range 30-50Hz indicate cognition, information processing,
learning, and perception. Research shows gamma oscillations
are engaged by speech and may have the potential to track its
dynamics [51], [54].

In this section, EEG signals from different regions
and bands are studied to understand their importance in
speech-induced EEG. SLU classification results for all exper-
imental data conditions corresponding to all region-band
pairs across the five Datasets are depicted in Figure 5. Tem-
poral and parietal region channels consistently perform better
than channels extracted from other regions(average absolute
gain(AAG) of 1.85% and 1.68% over other regions respec-
tively). Concerning the frequency bands, the gamma band
gives the best classification performance(AAG of 2.62% over
other bands), closely followed by the beta, delta, and theta
band. Given these observations, the two best performing

FIGURE 6. Channel-wise power spectra analysis.

regions and bands in combination were extracted and anal-
ysed across all datasets. As suggested in [32], the delta sub-
tracted beta band characteristics were also analyzed, and their
SLU classification accuracies were compared with the best
performing frequency band in a similar experimental set-up
for Dataset 1. We find that the Beta:Gamma band renders
better classification performance than the Beta-Delta band
(≈1.2% AAG across datasets).

To further visualize the region-band characteristics and to
support the reported recognition scores, channel-wise fre-
quency spectra and associated topographic maps of raw EEG
signals are plotted for a session picked at random in Figure 6.
A subset of 65% of the data is utilized to generate the plot.
A single frequency representing every band considered is
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FIGURE 7. (a) 2LDP and (b) GMM-HMM performance is (plotted side by side for comparison) for Case-A, Case-B and Case-C for all Datasets.

picked at random for visualization(2Hz from delta, 6Hz from
theta, 10Hz from alpha, 22Hz from beta, and 40Hz from
gamma). The log power spectral density for each channel is
calculated from the subset and is plotted across a frequency
range of 0-50Hz. The scalp topographic maps show the scalp
distribution of power in that particular frequency.

Comparing the topographic maps with the reference elec-
trode cap region marking in the inset, it can be observed
that specific frequency ranges have corresponding regions
of data concentration. As is extensively reported in the lit-
erature, the alpha band frequency activity is concentrated
in the occipital region. Similarly, high concentration can be
observed in the temporal and parietal regions for the gamma
and beta band frequencies. Relatively lesser temporal and
parietal concentrations are observable in the delta and theta
bands. These inferences are consistent with the classification
values reported experimentally.

C. UNIT CLASSIFICATION
The analysis so far suggests that SLUs are the best BU
for classification. Also, the temporal and parietal region
channels filtered in the beta-gamma band capture maximum
discrimination. Post analyzing these results, and the best
performing feature set(determined using the selection by
exclusion method above) was used for classification. All
experiments henceforth report SLU classification results
using temporal-parietal channels in the beta-gamma band.

Apart from the 2LDP classifier, a GMM-HMM classifier
is also trained for SLU recognition. While the 2LDP model is
trained using 36-dimensional STE features (from 36 temporal
and parietal channels), the GMM-HMM model is trained by
considering each channel to be an independent data instance.
The implementation of 2LDP was done in MATLAB and
GMM-HMM was done using the Kaldi toolkit [55] in this
article. Hyper-parameters were tuned empirically. The num-
ber of states of the HMM used to model the temporal units
were specifically hard-coded in the range 3-5 for distinct
units depending on their average duration. The number of
GMM components was set to 3 per state, and a 1.28 boost

FIGURE 8. Boxplot for all Datasets.

silence probability was assigned for the beginning and ending
portions of the waveform.

Statistical Analysis of Inter-Intra Sessions and Subjects
is performed to establish generalizability. Figure 7 com-
pares the SLU classification accuracies across the two clas-
sification methods, 2LDP and GMM-HMM for the three
cases of testing(Case-A(Intra session), Case-B(Inter session)
and Case-C(Inter subject)). Confidence intervals across all
subjects are marked for each instance. Chance accuracy is
4% for Dataset 1 and 2 and 1.9% for Dataset 3. Boxplot
analysis using cross-validation results is also done for all
Datasets to inspect the distribution of data. The following
values of the accuracy distribution are plotted in Figure 8:
minimum, maximum, median, first and third quartile. Leave-
one-subject(LOS) out accuracy(Case C) is plotted for all
30 subjects for the audition experiment in Figure 9. The
reported mean and chance accuracies for every dataset are
also marked for comparison.

A comparison of the performance of the two models across
datasets reveals that the EEG features classified using a
GMM-HMMmodel give better accuracy than 2LDP for cases
A and B. Since DS3 has 2 sessions for all subjects, the perfor-
mance variation across cases A, B, and C form an unbiased
evaluation. In DS3, it is observed that 2LDP consistently
gives better classification accuracy for the inter-subject case
as compared to the GMM-HMM model variant.
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FIGURE 9. LOS accuracy for all 30 subjects(audition).

D. CONTEXT MODELLING
All the results reported above were obtained without explic-
itly using context information, i.e., assuming that the prob-
ability of an SLU is independent of the location at which
it occurs. As there is a one-to-one temporal correspondence
between the EEG signal and speech, this section investigates
the effect of context modeling approaches in SLU classifi-
cation performance. Two kinds of context modelling can be
incorporated in the GMM-HMM model;

1) Acoustic level: These are the tri-unit models that cap-
ture the different contexts in which an EEG unit can
occur and models them explicitly.

2) Transcription level: These utilize the data transcrip-
tions to determine which linguistic paths are more
probable than the others and help improve the confi-
dence and correctness of the decoded output. Since our
datasets have limited transcription vocabulary, the tran-
scription level context modelling was built from a ran-
dom set of 10,000 sentences taken from the text of wall
street journal(WSJ0) database [56].

It is observed that incorporating a bi-SLU context model
built using the text vocabulary greatly improved the per-
formance. This boost in performance due to context mod-
elling is seen to be significant across databases(Figure 10)
for the best performing feature-model pair considered
in this work. In order to comment on limited vocab-
ulary applications, a transcription-level language model
built using the data-specific text vocabulary was used for
decoding. This further improved the decoding accuracy by
8.8 ± 1.7% across subjects as outlined by examples given
in Table 3.
Continuous speech decoding from neural signals, as per-

formed in [22], can be considered an invasive counterpart
of our classification framework. They report 40% accuracy
in a 25 syllable-pool set-up as compared to an accuracy
of 37.2% in our work using non-invasive EEG. Further,
the transcribed outputs from the decoded EEG signals can
be synthesized as speech using a trained text to speech
synthesizer, thus making it a functional communication
interface.

FIGURE 10. Effect of acoustic level and transcription level context
modelling: Mono-SLU and Tri-SLU classification performance with and
without bigram-SLU context modelling is plotted along with their
confidence intervals to highlight the improvement in performance
contributed by each stage of context modelling.

TABLE 3. Single trial decoding of perception phase EEG signals for the
Dataset 3(54 syllables). o: Original sentence, wd: decoded sentence with
WSJ language model, od: decoded sentence with own data-specific
language model. Substitutions are highlighted, deletions are striked out
and insertions are in red.

E. METHODOLOGICAL DESIGN ADVANTAGES
Performance accuracies aside, the proposed approaches also
offer design-level benefits. In comparison with popular
speech-EEG decoding protocols, the advantages of the pro-
posed framework are three-fold.

1) Large-set Decoding: Majority of works classify a
closed-set vocabulary of units such as words [57], [58]
and phrasal blocks [30]. This makes the scalability of
the protocol to newer unseen test instances difficult.
In the proposed approach 54 syllables are used as the
fundamental units for recognition, therefore the sup-
ported vocabulary can be very large.

2) Syllable recognition in continuous speech: Exist-
ing syllable and vowel based classifiers disregard
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FIGURE 11. Distinct structures of three SLU classes (‘a’,‘am’ and ‘give’) across Subjects across Sessions a, Subject A, Session 1 MBT, b, Subject A,
Session 2 MBT, c, The STE features of a segment of sa1(black) and sa2(pink) EEG signals containing the beginning silence portion followed by the three
non-silence SLUs occurring in a single trial are plotted, d, Subject B, Session 1 MBT, e, Subject B, Session 2 MBT, f, SLU templates across different
Datasets with varying contextual occurrences.

contextual dependencies by training and testing mod-
els on isolated units rather than continuous speech
[28], [29], [59]. The proposed method performs
context-independent decoding of units in continuous
speech-EEG signals across mismatched sentences.

3) Model Generalization: Most neural decoding
approaches perform binary classification [25], [26],
[29]. Although there have been few successful
multi-class attempts, they do not consider subject and
session independence [22], [27]. Addressing the con-
cerns of variability due to these factors [60], the pro-
posed approach provides generalization acrossmultiple
subjects and sessions while performing multi-class
SLU decoding.

Summarising, the proposed approach is the first attempt to
perform multi-class fundamental unit classification in con-
tinuous speech EEG generalizing over multiple subjects and
sessions.

VI. PROTOCOL CONTROL CHECKS
Specific control checks at different stages of the classification
protocol were carried out to further establish the validity of
these results. Since these are just for inspection purposes,
the experiments contained in this section are not reported for
all datasets.

A. DTW WITHIN SEGMENTS
During segmentation, we obtained SLU segment bound-
aries which were iteratively corrected following the
speech-marked manual boundary representations. Since we

intend to capture the level of similarity in these segmented
SLUs, we perform DTW across the SLUs and report the
results. 50% of the segmented trials were taken to obtain a
single train CWRT template per SLU class. The rest of the
segments were tested against them by performing a DTW
and assigning them to the class with minimum distance.
An average classification accuracy of 31% was observed
over 25 SLU classes across 12 subjects in Dataset 1. This
establishes that there exist unique signatures specific to a
particular SLU class.

B. VISUALIZATION OF SLU TEMPLATES
In order to visualize the signatures unique to an SLU class,
we plot the EEG signal features corresponding to specific
SLU classes and make the following observations:

1) Figure 11a, 11b, 11c and 11d aim to visually distinguish
the short term EEG energy features of distinct SLUs.
All trials are mean normalized before segmentation.
The pre-averaging step of CWRT technique applies
dynamic time warping based scaling to yield templates
of constant length from all trials for a particular SLU
class. The shaded portions in the figure represent the
variance of these equilength STE feature templates
across all trials, and the solid line corresponds to
the mean best template (MBT) of that class which
is chosen to perform 2LDP matching. This graphical
visualization of templates belonging to three different
SLU classes provides substantial evidence for discrim-
ination in terms of the temporal shape and structure
of distinct SLUs. Three SLUs, namely, ‘a’,‘am’, and
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FIGURE 12. Topographic map, ERP images, and Raw EEG signals plotted for EEG data recorded during different tasks, namely, Audition, Imagination,
Production(artifact highlighted) and Mouse click followed by beep.

‘give’ are chosen and their templates are plotted across
sessions and across subjects.
• The SLU templates seem to possess similar tem-
poral structure while comparing different sessions
from the same subject(left to right).

• The similarity in structure degrades when we com-
pare across subjects(top to bottom).

This visualization thus provides the justification for
the performances reported for inter-intra subjects and
sessions.

2) Figure 11c is plotted to compare and analyze the dis-
tinct structures of the silence and non-silence portions
of EEG. The STE features of a segment of sa1(red)
and sa2(blue) EEG signals containing the beginning
silence portion followed by the three non-silence SLUs
occurring in a single trial are plotted. Two significant
observations of this visualization are
• The silence portion appears similar irrespective of
the sentence being played.

• The variance in the silence portion across different
templates is small as compared to the non-silence
SLUs. The zoomed inset shows a narrow shaded
area confirming the above observations.

C. CROSS-DATASET TEMPLATES
Although Dataset 1 and Dataset 2 have different sets of
input speech sentences, their constituent syllabic content
is the same. In order to verify the SLU level signatures,
we obtain CWRT MBT train templates from Dataset 2 and
perform testing on EEG trials from Dataset 1 by following
the 2LDP classification protocol. We get an SLU classifica-
tion accuracy of 31.2% while testing against cross-dataset
reference templates as opposed to 37.1% in self-dataset
reference templates. Figure 11f temporally visualizes the
MBTs of two specific syllables from datasets 1 and 2, and
reveals template-level similarity across datasets. The good
cross-dataset accuracy, despite the occurrence of SLUs in
varying contexts, further supports the claim of the existence
of SLU-specific signatures in EEG.

D. SIGNAL LEVEL VISUALIZATION OF THREE PHASES OF
CO-SPEECH EEG DATA
As our experiments deal with multiple tasks being per-
formed by the subjects, a signal level analysis of EEG
data to locate visual differences between the tasks is per-
formed. Here four tasks are chosen, namely hearing task,
speaking task, imagination task, and mouse left-click. All
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TABLE 4. Experimental Results Based Inferences.

events of each task, irrespective of the sentence it involves,
were segmented, segregated, and averaged across time.
2D topographic maps(TPM) of the average of all these
instances and one-dimensional trial level event related poten-
tial images(ERPI) are plotted for raw EEG signals for each
of the above tasks in Figure 12. The trials belonging to each
task are stacked together to obtain a 2D average ERPI(values
at trials-by-time). One second prior to the event onset and
3 seconds after the event onset is the time duration considered.
Trials are sorted according to latency and adjacent trials are
smoothed to obtain the final ERPI. Alongside the topographic
maps and ERP images, the raw EEG signals are also plotted
for the three phases, namely, audition, imagination, and pro-
duction.

Few significant points of observation arise from these
plots. The artifacts during the production phase are promi-
nently visible in the raw EEG signal plot. The production
phase also shows higher energy/intensity spread in the TPM
and EPRI. Across all three phases, fairly high temporal and

parietal electrode cap region activity can be observed from
the topo maps. Passive audition TPM and ERPI show lower
energy intensity as compared to production and imagination.
We also see that in both the production and imagination
ERPI, the 1 second duration segment before the event onset
is similar and closely resembles the ERPI of the audition
phase. The reason for this could be the fact that an auditory
instruction cue is played right before the subject starts to
imagine or speak. Otherwise stated, the subject performs
passive audition when the instruction is being played, hence
supporting the similarity in the pre-onset ERPI segments.
The most consistent localized energy activity across trials is
observed in the mouse click event, which is followed by a
beep.

VII. CONCLUSION
Inferences drawn from the results discussed so far are jointly
summarized in Table 4. These observations also address
the concerns mentioned in Table 1. This work analyzes
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non-invasive EEG signals and aims to relate physical aspects
of the speech signal to its corresponding EEG modality by
computationally showing the existence of speech-specific
signatures in co-speech EEG. The paper adopts a ‘‘Selection
by exclusion’’ method to design an optimal experimental
set-up to classify SLUs from continuous co-speech EEG in
a multi-class scenario with much higher than chance accu-
racy. In addition to result-based experimentation, a variety
of control checks are performed to validate the implemented
protocols. In conclusion, given a limited vocabulary and
a strict language model, there is a growing possibility of
modelling naturalistic interfaces by capturing significant
co-speech EEG signatures.

VIII. DATA AVAILABILITY
The data that support the findings of this study are freely
available in https://www.iitm.ac.in/donlab/
cbr/cospeech_eeg_dataset/

IX. CODE AVAILABILITY
All codes may be obtained for non-commercial use by con-
tacting the corresponding author.
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