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ABSTRACT

Accurate estimation of spike train from calcium (Ca2+) flu-
orescence signals is challenging owing to significant fluctua-
tions of fluorescence level. This paper proposes a non-model-
based approach for spike train inference using group delay
(GD) analysis. It primarily exploits the property that change
in Ca2+ fluorescence corresponding to a spike has a notable
onset location followed by a decaying transient. The proposed
algorithm, GDspike, is compared with state-of-the-art sys-
tems on five datasets. F-measure is best for GDspike (41%)
followed by STM (40%), MLspike (39%), and Vogelstein
(35%). While existing methods are inspired by the physiol-
ogy of neuronal responses, the proposed approach is inspired
by GD-based high-resolution processing of the Ca2+ fluores-
cence signal. GDspike is a fast and unsupervised algorithm.
It is found to be unaffected when tested with five different
GCaMP indicators and scanning rate varying from 15Hz to
60Hz.

Index Terms— spike train, Ca2+ fluorescence, group de-
lay.

1. INTRODUCTION

Obtaining spiking inferences from neurons is extremely im-
portant for identifying the information processing task in local
networks of neurons and for other higher level tasks in com-
putational neuroscience. This is because neurons communi-
cate primarily via action potentials. Accessing the activities
of populations of neurons in vivo by means of Genetically-
Encoded Calcium Indicator (GECI) proteins [1] or Oregon
Green BAPTA (OGB) dye with two-photon imaging blurs in-
dividual spiking information. These Ca2+ fluorescence sig-
nals tend to be noisy with slow rise times and long decay tails,
which carry very little information about the underlying spik-
ing process. The actual neuronal action potentials need to be
“filtered” from this signals for further processing.

However, this estimation is limited owing to the follow-
ing reasons: First, background fluorescence varies with time
and is indistinguishable from the fluorescence changes during

spike occurrence. Second, the Ca2+ imaging and the fluores-
cence signals are contaminated by random noises of contin-
uously varying energy levels. Third, the intracellular Ca2+

level transients have large time constants and several of such
transients are non-linearly added causing difficulties in track-
ing the overlapping spikes [2].

Several methods proposed for inferring the spiking in-
formation can be categorized into model-based techniques
and supervised methods. Various model-based techniques
such as physiological models [3], template matching [4, 5],
likelihood-based alignment, and approximate Bayesian infer-
ence based on deconvolution [6, 7] are limited by the noise
statistics and model assumptions. Data-driven approaches
including STM [8] and other simple learning techniques [9]
need sufficient fluorescence traces with ground truth and of-
ten have a limited performance on unseen data. STM requires
preprocessing of the Ca2+ fluorescence signals by linear
regression fit and the spikes are modeled using a Poisson dis-
tribution [8, 10] which makes it again a model-dependent ap-
proach. The parameter λ is learned using a supervised model
[11] and the evaluations consider the spiking probabilities,
but not the “pulse-coded” spike train. Analyses inclusive of
the spike train and its metrics are very important as they rep-
resent the information encoded by a neuron. In MLspike [3],
the most probable spike train which maximizes the likelihood
of the given Ca2+ fluorescence trace is computed. The algo-
rithm is model-based and has high computational complexity
owing to autocalibration of parameters.

This paper proposes a GD-based algorithm inspired from
audio signal processing for obtaining the spiking informa-
tion. The Ca2+ fluorescence signal is converted to a mini-
mum phase sequence for which the group delay function is
then computed. The high-resolution and the additive property
of the minimum phase group delay function are exploited
[12]. The performance of GDspike is compared with state-
of-the-art systems considering both the “pulse-coded” spike
train and the spiking information (from which the spike train
is estimated) using F-measure, correlation, and Area Un-
der the ROC (AUC). The proposed method outperforms all
other methods for F-measure and performs comparable to



supervised-STM model for correlation and AUC.
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Fig. 1: Resolving power of the group delay function. (left) Mag-
nitude spectrum and (right) Group delay spectrum for a two-pole
minimum phase system.

2. PROPOSED WORK

2.1. Group Delay (GD) Function

The features used for the signal processing tasks are conven-
tionally obtained either from the temporal or spectral domain.
Spectral phase based features have recently been found to be
effective in various tasks [12, 13, 14]. Although the infor-
mation about a signal is present in both the magnitude and
the phase spectra, the latter has not received much attention
as Fourier analysis leads to the wrapped (±π) phase spec-
trum which makes it difficult to infer meaningful information.
Among different phase domain alternatives, the group delay,
and its derivatives are extensively used in audio signal pro-
cessing tasks. The group delay function τ(ω) of a discrete-
time signal x[n] is defined as:

τ(ω) = −d(θ(ω))
dω

(1)

where θ(ω) is the continuous phase spectrum. Group delay
could also be computed directly for minimum phase signals
[15] as:

τ(ω) =
XR(ω)YR(ω) +XI(ω)YI(ω)

|X(ω)|2
(2)

whereX(ω) and Y (ω) denote the discrete-time Fourier trans-
forms of x[n] and nx[n] respectively. R and I denote the real
and the imaginary parts respectively.

2.2. Minimum Phase GD Processing

For a single resonator system, the ratio of the value of the
peak in the magnitude spectrum to the value at a frequency
that is n dB below the peak is always lower than that of the
minimum phase group delay spectrum [12]. Using numerical
analyses this higher-resolution property is extended for mul-
tiple resonators as well. For a cascade of resonators, the GD
function exhibits high spectral resolution due to the additive
property of poles in the phase domain. Figure 1 illustrates
this phenomenon, where the example considered is a mini-
mum phase system with two complex conjugate poles. It is

evident that the peaks are better resolved in the GD domain
compared to the magnitude spectrum.

For non-minimum phase signals, the zeros outside the unit
circle in the Z-domain also appear as peaks in the GD do-
main in addition to the poles inside the unit circle. This limits
the performance of group delay for signal processing appli-
cations since it is difficult to differentiate between the zeros
outside and poles inside the unit circle. However, the mini-
mum phase equivalent of a non-minimum phase signal can be
obtained by taking the causal portion of the inverse Fourier
transform of magnitude spectrum raised to a power of γ [16].
Exploiting this method, the minimum phase group delay has
been extensively used for segmentation of speech into sylla-
bles [17, 16, 18] and for obtaining percussion stroke onsets
[19].

2.3. GD for Spike Estimation
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Fig. 2: Group delay domain representation for signal units compris-
ing of an onset, an attack, and a decay. (a) A Hindi speech syllable
(“Va”), (b) A percussive stroke in Mridangam (“Tha”), and (c) A
Ca2+ fluorescence signal corresponding to an action potential. The
bottom panel shows the corresponding minimum phase GD func-
tions extracted from the top panel.

The fluorescence changes which corresponds to the neu-
ronal firing is similar to that of syllables in speech and onsets
in music signals (see Figure 2) though the durations are dif-
ferent. In speech signals, a syllable is the smallest meaning-
ful production unit. Similarly, for a percussion instrument, a
stroke is the fundamental production unit. In neuronal signals,
an action potential is a fundamental unit which is observed as
a fast rise and long decay tail in the Ca2+ signals (the latency
is caused by the kinetics of calcium binding to the indicator).
All the three signals exhibit an onset, an attack, and a decay.
GD-based processing of such signals leads to signals that rise
at the onset and taper exponentially away from the peak after
the attack (In Figure 2, the bottom panel (a) shows inverse of
GD, (b) and (c) shows GD). The time series is initially consid-
ered as the Fourier representation of a hypothetical minimum
phase signal (Figure 3(a)). The GD of the hypothetical sig-
nal is computed using Equation 2 (Figure 3(b)). This signal



is then converted to a spike information via a simple trian-
gle approximation step where peaks and valleys are replaced
by zeros and midpoints between them are considered as new
peaks (Figure 3(c)).

2.4. Algorithm

A brief overview of the algorithm is presented below:

Algorithm 1 GDspike Algorithm

Input: Fluorescence signal C[n].
Output: Spike train Sp[n].

1: Consider the fluorescence signal C[n] as the magnitude spec-
trum of h[n].

2: Compute h[n] = F−1(C[n] + C[−n]).
3: Take causal portion of h[n] limited to window scale factor

( length(h[n])
WSF

) to obtain minimum phase signal h1[n].
4: GD[n] = Group delay of h1[n].
5: Find the zero crossing positions i in GD

′
[n] (∀i ∈ N ).

6: Compute Sp[ 2i+1
2

] = abs(GD[i] − GD[i + 1]) and Sp[i] =
0,∀i.
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Fig. 3: GDspike Algorithm. (a) A segment of a fluorescence signal,
(b) its minimum phase group delay representation, (c) the spike in-
formation, (d) predicted spike train, and (d) action potential ground
truth.

Figure 3(a) shows a segment of normalized fluorescence
signal taken from the 1st neuron of GCaMP6f dataset [20].
It can be observed that most of the fluorescence changes are
captured and the spike information has lower dynamic ranges
which helps in thresholding to obtain the spike train (Fig-
ure 3(d)). The highlighted portion refers to a window with
a hardly visible spike in the fluorescence segment that is de-
tected by the proposed approach.

3. EXPERIMENTATION

3.1. Dataset

GDspike is evaluated the publicly available dataset provided
by Svoboda lab, at Janelia Research Campus1 ([21, 20, 22]).

1http://crcns.org

The dataset contains simultaneous loose-seal, cell-attached
recordings (ground truth) and Ca2+ fluorescence imaging us-
ing GECI proteins with green and red fluorescence. These
data are collected from the neurons of in vivo mice visual
cortex. The ground truth recordings are obtained at a high
sampling rate ' 10kHz while the fluorescence imaging is
recorded at a lower sampling rate, ranging from 15Hz to
100Hz. A summary of the dataset is given in Table 1. The
preparations are made using different scanning methods, lead-
ing to different sampling rates of the Ca2+ fluorescence imag-
ing. Synthetic data is not considered for evaluations as it has
been experimentally shown [8] that performances on actual
and synthetic data vary significantly.

Table 1: Dataset used for evaluation

Set # cells Indicator Samp. Rate (in Hz) Spikes Ref.

1 9 GCaMP5k 50 2735 [21]
2 11 GCaMP6f 60 4536 [20]
3 9 GCaMP6s 60 2123 [20]
4 11 jRGECO1a 25 9080 [22]
5 10 jRCaMP1a 15 3624 [22]

3.2. Evaluation Metrics

Evaluation metrics considered in the literature focus either on
the spike train [3, 7] or spike information [8], but not both.
This work considers both of them and evaluates these algo-
rithms on appropriate measures used in the literature. We
are not considering the information gain [8] as a performance
measure since it assumes a Poisson/non-linear model for the
spike inference. All the measures are reported as an average
across the datasets.

3.2.1. Area Under the Curve (AUC)

The AUC is measured as the area enclosed by the true positive
rate (TPR) against the false positive rate (FPR) by varying the
threshold of the spike information signal. It is the probability
that an approach will rank a randomly chosen spike position
higher than a randomly chosen position without any spike.
AUC considers all the peaks above the threshold as spikes and
is not sensitive to changes in the relative height at different
temporal positions. AUC is suitable for algorithms for which
a simple threshold is used to obtain the spike train from spike
information, unlike MLspike [3].

3.2.2. Correlation

Correlation is a common evaluation measure used in the liter-
ature [8, 3] wherein the similarity of two signals are consid-
ered. Linear correlation coefficient is computed between ev-
ery sample of the original and the estimated spike train. This
measure alone is not enough for representing the performance
of a spike train inference algorithm since it does not consider
uncertainty of the predictions [8].



3.2.3. F-measure

F-measure is defined as the harmonic mean between sensitiv-
ity and precision. The spike predicted by a method is treated
as True Positive if it is reported within a temporal bin of size
0.5s of the original spike train. The distance between the ac-
tual (ground truth) and estimated spikes are computed using
a dynamic programming algorithm [23] which penalises the
distance for spike deletions, insertions, and shifts.

3.3. Results and Analysis

Table 2: Performance of GDspike

Dataset Recall Prec. F-measure Corr. AUC

GCaMP5k 0.57 0.68 0.43 0.070 0.84
GCaMP6s 0.82 0.60 0.49 0.022 0.86
GCaMP6f 0.79 0.68 0.55 0.035 0.80

jRGECO1a 0.52 0.38 0.31 0.034 0.71
jRCaMP1a 0.54 0.25 0.29 0.056 0.76

The results obtained by GDspike on each dataset (aver-
aged across all the examples) is shown in Table 2. Observe
that GDspike consistently performs well across all the prepa-
rations. Table 3 shows the average performance for three
state-of-the-art algorithms namely, Vogelstein deconvolution
algorithm, MLspike, and STM in comparison with GDspike.
The algorithms used for comparison span over supervised
[8], physiological model-based [3] and deconvolution [7]
approaches. Other algorithms are not considered as it is
shown in [8] that these algorithms outperform all the other
approaches. The proposed approach significantly outper-
forms Vogelstein algorithm over all of the error measures and
datasets. STM, being a supervised approach, performs well
with the datasets which are similar to the training dataset.
MLspike algorithm is computationally less efficient com-
pared to Vogelstein and GDspike owing to the autocalibration
time taken for the tuning of parameters. GDspike has best
F-measure and comparable AUC with the STM approach
across all the datasets.

Table 3: Average performance of different algorithms

Algo. Recall Prec. F-measure corr. AUC
Vogelstein 0.398 0.705 0.345 0.036 0.64

STM 0.469 0.752 0.394 0.055 0.80
MLspike 0.826 0.508 0.407 0.067 0.58
GDspike 0.648 0.520 0.413 0.043 0.79

The results obtained by GDspike is analyzed on various
counts. First, it is analyzed on the basis of the dataset. Figure
4 shows the performance measures in comparison with other
algorithms in each of the preparations. The proposed algo-
rithm outperforms STM and Vogelstein algorithms for most
of the error measures on the most recent dataset (jRGECO1a
and jRCaMP1a). STM, being a data-driven model, fails
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Fig. 4: Right panel shows the comparison of algorithms based on
(a) F-measure and (b) Average correlation. Left panel is the ROC
averaged across the datasets for different systems.

to achieve good evaluation measures for unseen data with
a larger number of spikes and a lower scanning rate com-
pared to other preparations. On the datasets GCaMP6f and
GCaMP6s, GDspike outperforms Vogelstein and MLspike
and has a comparable performance with that of STM in terms
of F-measure. MLspike has the best F-measure for GCaMP5k
dataset followed by GDspike.

Analysis based on error measures also favors the pro-
posed approach. Figure 4(a) shows comparative evaluations
of F-measure for each dataset. Observe that GDspike has
consistent F-measure across the datasets with different scan-
ning rates and indicator proteins, unlike STM and MLspike.
GDspike gives the second best correlation for all the datasets
except GCaMP5k (Figure 4(b)). The Right panel in Figure 4
shows the ROC2 and it is inferred that GDspike outperforms
all the unsupervised approaches and has comparable AUC
values to that of the STM model.

4. CONCLUSION AND FUTURE WORK

A novel signal processing and non-model-based approach is
proposed in this paper for extracting the spiking information
from fluorescence signals. GDspike is able to resolve closely
spaced tiny fluorescence peaks owing to the additive and high-
resolution properties of the signal in the phase domain. It
is evaluated using three metrics representing similarity to the
actual spike train over five different datasets and is compared
with three state-of-the-art algorithms. The proposed approach
outperforms other approaches for F-measure and has compa-
rable results to the supervised STM approach for AUC. One
future direction would be to use the GD positions as a feature
for training the supervised model to obtain the spike train.

2Source code, datasetwise ROC and examples at: https://sites.
google.com/site/groupdelayspike
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