
CE: Alpana; WCO/19313; Total nos of Pages: 6;

WCO 19313

 CURRENT
OPINION Mechanisms and therapeutic challenges in autism

spectrum disorders: insights from Rett syndrome

Jorge Castro, Nikolaos Mellios, and Mriganka Sur

Purpose of review

A major challenge for understanding the neurodevelopmental disorders, including autism spectrum
disorders (ASDs), is to advance the findings from gene discovery to an exposition of neurobiological
mechanisms that underlie these disorders and subsequently translate this knowledge into mechanism-
based therapeutics. A promising way to proceed is revealed by the recent studies of rare subsets of ASDs.
In this review, we summarize the latest advances in the mechanisms and emerging therapeutics for a rare
single-gene ASD, Rett syndrome.

Recent findings

Rett syndrome is caused by mutations in the gene coding for methyl CpG-binding protein 2 (MeCP2).
Although MeCP2 has diverse functions, examination of MeCP2 mutant mice suggests the hypothesis that
MeCP2 deficiency leads to aberrant maturation and maintenance of synapses and circuits in multiple brain
systems. Some of the deficits arise from alterations in specific intracellular pathways such as the PI3K/Akt
signaling pathway. These abnormalities can be at least partially rescued in MeCP2 mutant mice by
treatment with the therapeutic agents.

Summary

Mechanism-based therapeutics are emerging for single-gene neurodevelopmental disorders such as Rett
syndrome. Given the complexity of MeCP2 function, future directions include combination therapeutics that
target multiple molecules and pathways. Such approaches will likely be applicable to other ASDs as well.

Keywords

molecular signaling pathways, monogenic disorders, neurodevelopmental disorders, pharmacological
therapeutics

INTRODUCTION

Autism spectrum disorders (ASDs) are a group of
neurodevelopmental disorders that share common
core symptoms of deficits in language and
communication, impaired social interactions,
and stereotypic or repetitive behaviors. ASDs are
characterized by tremendous heterogeneity in their
clinical diagnosis and pathophysiological mechan-
isms. Although all ASD diagnoses share the core
symptoms above, individuals with ASD show great
differences in severity across these domains and may
also suffer from secondary symptoms such as vari-
ous degrees of cognitive impairment that are specific
for each disorder. Similarly, ASD cause is diverse and
existing evidence points to a complex genetic basis.

Both ‘rare’ and ‘common’ genetic variants are
considered to be risk factors for ASD. Large copy
number variants (CNVs) have been recently impli-
cated in subsets of ASDs [1], with specific recurrent
CNVs observed across various phenotypes. With few

exceptions, CNVs affect several genes and are
extremely rare for any given locus. However, many
neurodevelopmental disorders with overlapping
diagnosis to classic autism, often accompanied by
cognitive impairment, are caused by single-gene
mutations. Although monogenic disorders account
for a small percentage of the total cases diagnosed
with autism (Table 1), they might be very informa-
tive about the role of common pathogenic pathways
affected by the single-gene changes, and hence
could be of importance for the discovery of potential
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therapeutic targets (reviewed in [2]). What the vast
majority of single-gene ASDs have in common is
that the affected gene product is involved in one
or more signaling pathways and therefore exerts
influence over discrete effectors. In many instances,
however, it may be difficult to pin down the
defective gene product to a specific symptom and
unlikely that a single targeted molecule would
restore regular function in the organism. Crucially,
single-gene mutations provide accurate mouse
models of ASD, which are central for assaying
molecular, circuit, and behavioral functions and
for developing therapeutics.

Because ASDs are considered to be neuro-
developmental disorders, an important variable to
be considered in the development of therapeutics is
the time point of intervention. Several kinds of
evidence point to the possibility that although early
intervention for ASD is likely to have the most
impact, therapeutics may still be effective at a range
of ages. The development of brain modules, circuits,
and synapses, particularly those mediating complex
behaviors, has multiple and diverse time courses of
maturation and plasticity. Furthermore, the view of
ASDs as purely ‘developmental’ disorders is being
challenged by the findings that the gene products
and molecules affected by the specific disorders are
required for appropriate function well past the early
development and even throughout life, for deletion
of relevant genes in adulthood still leads to
the expression of the phenotype [3,4]. The goal of

mechanism-based therapeutics is to take advantage
of the growing knowledge of development and
plasticity of circuits and synapses, and the function
and impact of disease genes, in order to intervene at
appropriate processes and levels.

We will focus in this review on Rett syndrome,
a monogenic X-linked neurodevelopmental syn-
drome with significant phenotypic overlap with
ASD. Rett patients, who are almost always women,
develop normally until 6–18 months of age, but
suffer from a progressive loss of developmental
milestones similar to that observed in regressive
forms of autism, such as cognitive and communi-
cation deficits, anxiety, irritability, and repetitive
behaviors. In addition, the syndrome is character-
ized by severe motor, sensory, and autonomic
nervous system disturbances, such as irregular
breathing and heart rate. Other symptoms
include seizures, growth failure, and gastrointestinal
problems.

MECP2 AS A HIGH-LEVEL GENOMEWIDE
REGULATOR

About 90% of Rett syndrome cases are caused by
mutations in the gene methyl CpG-binding protein
2 (MECP2) [5]. MeCP2 is a highly conserved basic
nuclear protein with very diverse functions (Fig. 1a).
It was initially found to be associated with methyl-
ated DNA, binding to methyl CpG islands especially
if AT-rich sequences are adjacent to them AQ2[6].
A transcriptional repressor domain associated with
the Sin3A–HDAC1–HDAC2 co-repressor complex
that blocked mRNA transcription was also ident-
ified, so MeCP2 was originally thought to be solely
a chromatin-silencing regulator [7]. However, recent
evidence has shown that it plays a far more complex
role as it might also act as a RNA-splicing modulator
and transcriptional activator by binding to CREB AQ3
[8,9]. This would explain the fact that transcrip-
tional profiling does not show dramatic changes
of gene expression in the brain of mutant MeCP2
mice as expected from a putative genomewide

KEY POINTS

� Latest advances in therapeutics for Rett syndrome.

� Latest considerations of MeCP2 mechanisms,
emphasizing its interactions with microRNAs.

� Necessity of new pharmacological strategies that
combine analysis of molecular pathways with suitable
drugs to enable therapeutic effects.

Table 1. AQ6Some rare monogenic forms of ASD and their associated gene functions

Name Gene Gene function

Fragile X syndrome FMR1 Translational control

Rett syndrome MECP2 Transcriptional regulator

Tuberous sclerosis TSC 1/2 Akt/mTOR signaling

Neurofibromatosis NF1 MAPK signaling

Hamartoma tumor syndrome
(Bannayan–Riley–Ruvalcaba syndrome)

PTEN Akt/mTOR signaling (PI3K inhibitor)

ASD, autism spectrum disorder.

Developmental disorders
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repressor [9,10], and that increased expression levels
of MeCP2 are equally detrimental [11]. The role of
MeCP2 in epigenetic regulation is expanded further
by the finding that MeCP2 can globally alter the
state of chromatin condensation [12].

Furthermore, MeCP2 is able to activate retro-
transposon element transcription in neurons [13]
and promote gene imprinting [14], thus inserting
additional layers of complexity to the role of MeCP2
in brain function [15]. In addition, MeCP2 has
been recently shown to regulate the expression of
microRNAs (miRNAs) important for brain develop-
ment and plasticity [16–18]. One specific family
of MeCP2-regulated miRNAs is miR-132/miR-212
which is known to affect experience-dependent
cortical plasticity [19,20]. Intriguingly, miR-132/
miR-212, brain-derived neurotrophic factor (BDNF),
and CREB signaling (Fig. 1b) are involved in a
positive feed-forward loop [16,21,22]. CREB-binding
elements exist in the promoter of IGF-1 which
in turn can also activate CREB-mediated BDNF
expression [22], thus forming a complex regulatory
system representative of the bi-directional inter-
actions between MeCP2 and a subset of its targets.
Both BDNF and IGF-1 can directly activate PI3K/Akt/
mTOR signaling. In addition, MeCP2 knockout
mice also express high levels of the miR-199 family

[17,18], that is involved in a mutually inhibitory
loop with the PI3K/Akt/mTOR pathway [23,24],
which as discussed below is known to be affected
in the disease (Fig. 1b). Therefore, MeCP2 is able to
modify a subset of PI3K/Akt regulating microRNAs,
thus controlling indirectly a large array of molecules
responsible for local protein synthesis and synaptic
plasticity (Fig. 1). Future work is needed to elucidate
whether this proposed mechanism is of importance
for Rett syndrome and whether it could provide
insights for novel therapeutic options. Moreover,
MeCP2 targets can in turn modify other microRNAs,
so that we cannot rule out the possibility of MeCP2
further controlling a larger array of molecules.
Lastly, MeCP2 mediates the activity-dependent de-
repression of miR-184 in cortical neurons [25].
Notably, this activity-dependent dissociation of
MeCP2 from miR-184 promoter occurs only in the
paternal chromosome, thus linking MeCP2 to
imprinting of small noncoding RNAs.

MeCP2 is ubiquitously expressed, but higher
protein levels are found in the brain [7]. Within
the brain, neurons were the first cell population
where MeCP2 was detected, but several recent
studies have revealed the presence and functional
role of MeCP2 in astrocytes [26–28], microglia
[29], and neuronal subsets, including inhibitory

miR-132/212
BDNF

PI3K
Akt/mTOR

MAPK

miR-199a

Local protein translation
Synapse function/

plasticity

• MeCP2 reactivation [6,7]
• Bone marrow transplantation [8]MeCP2

• Genetic overexpression [9]
• LM22A-4 [10]
• CX546 [11]
• 7,8-Dihydroxyflavone [12]
• Fingolimod [13]

• (1–3) IGF-1 [14]
• rhIGF-1 [15]

(b) (c)

Norepinephrine

Serotonin

GABA

• NO-711 [17]
  (GABA reuptake inhibitor)

• 8-OH-DPAT [17]
  (5-HT1A receptor agonist)
• Desipramine [18]
  (serotonin reuptake
  inhibitor)

•Desipramine [18]
  (nor-epinephrine reuptake
  inhibitor)

• CNF-1 RhoGTPase [16]
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Chromatin
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Alternative
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IGF-1
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FIGURE 1. MeCP2-mediated molecular mechanisms that provide opportunities for therapeutics. (a) Schematic of different
mechanisms by which MeCP2 can affect gene expression. (b) Schematic showing how MeCP2 regulates protein-coding genes
and miRNAs, so as to influence local translation and synaptic development, plasticity, and function. Also shown are attempted
targets and molecules for therapeutic interventions. MeCP2 is known to increase the transcription of BDNF which directly
increases PI3K/Akt/MAPK signaling, or affect plasticity-related miR-132, which in turn can target MeCP2 expression, thus
forming a regulatory loop. In addition, BDNF can activate CREB, which can bind to IGF-1 promoter and regulate transcription.
IGF-1 is another positive regulator of the signaling pathways implicated in translation and synaptic plasticity. Akt/MAPK and
mTOR are further involved in a double-negative inhibitory loop with miR-199a, a miRNA inhibited by MeCP2. (c) Therapies
aimed at restoring proper synaptic function by neurotransmitter rebalancing. BDNF, brain-derived neurotrophic factor; IGF-1,
insulin-like growth factor 1; MeCP2, methyl CpG-binding protein 2.
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interneurons [30]. Interestingly, MeCP2 has been
shown to bind to the promoter of somatostatin
(SST) and positively regulate its expression together
with CREB [18]. It would be therefore worthwhile
to study the effects of specific inhibitory cell-type-
specific deletions of MeCP2, including SST. In
addition to its spatial expression pattern, MeCP2
has a temporal expression regulation in the brain
that directly correlates with postnatal neuron
and circuit development, peaking postnatally, but
remaining high into adulthood. This suggests that
MeCP2 is involved in the maturation of existing
neurons, rather than in just the differentiation
and development of neuronal precursors or neurons
[12,31,32], and also that its expression is required
throughout life as recent evidence has shown [4].

FUNCTIONAL MECHANISMS OF MECP2
AND THE CHALLENGES FOR
THERAPEUTICS

As mentioned above, MeCP2 expression peaks
during early postnatal development in mice
and humans [33], a period when maturation and
refinement of synapses and circuits takes place in
the cortex. MeCP2 mutant mice have immature
excitatory synapses in the cortex and hippocampus
[34–36]; furthermore, visual cortical circuits show
prolonged plasticity into adulthood, indicating that
synapses and circuits fail to mature [34]. The nature
and extent of the influence of MeCP2 on synaptic
maturity and plasticity are still being investigated.
So far, no major circuit connectivity changes have
been consistently detected in human Rett syndrome
brains or in mouse models [37,38]. This, in conjunc-
tion with the reversibility of some of the symptoms
in mouse models [34,39,40,41

&

,42,43], might imply
that the deficits are at the microcircuit level, involv-
ing synaptic transmission and synaptic structural
reorganization. In fact, the key therapies tested
to ameliorate Rett syndrome revolve around the
restoration of synapse and circuit function with
drugs that affect the molecular mechanisms of
synaptic maturation [34,41

&

].
BDNF is one of the first recognized direct targets

of MeCP2 [44]. MeCP2 control over BDNF expres-
sion has proven to be complex, implicating different
binding sites in the BDNF gene and partners [45],
but there is convincing evidence that the level of
BDNF is downregulated in MeCP2 mutant mice in
different brain regions [9,44] and its re-expression is
beneficial [44]. Not surprisingly, BDNF was one of
the first target candidates for a potential therapy.
Unfortunately, its therapeutic effects are comprom-
ised by its limited capacity to cross the blood–
brain barrier, which has prompted the use of BDNF

receptor (TrkB) agonists [41
&

,46] or sphingosine-1
phosphate receptor modulator (Fingolimod), which
increase BDNF levels in vivo and the activation of its
downstream signaling pathway MAPK [47

&

].
Another strategy to address this problem is

to use insulin-like growth factor 1 (IGF-1) and its
tri-peptide form ([1–3]IGF-1) [34,48]. Both IGF-1
and BDNF supplementation therapies are based on
their effects on neuronal developmental, synaptic
maturation, and plasticity exerted through two
key cell-signaling pathways, PI3K/Akt and MAPK
[49,50]. These signaling pathways are known to
be disrupted in MeCP2 mutant mice [41

&

,51
&

], and
have been directly involved in the regulation of
protein translation and neural function by promot-
ing the synthesis of postsynaptic proteins such
as PSD-95 [52]. Although there is not a complete
picture of how MeCP2 can control the molecular
and cellular changes that translate into deficits in
synaptic maturation and circuit connectivity, the
PI3K/Akt and MAPK pathways should be considered
as important players through their control over
dendritic and spine genesis, and local protein
synthesis [53,54]. In line with the importance of
therapies aimed to favor a dynamic and appropriate
microcircuit establishment, Rho-GTPases, a family
of proteins involved in actin assembly and
remodeling, are another potential candidate for
therapeutic action in Rett syndrome [55

&

]. This
superfamily of proteins is known to specifically
control neurite outgrowth and differentiation, spine
genesis, and synapse development (reviewed in [56]).

Rett syndrome has a high prevalence of auto-
nomic dysfunction with a remarkable respiratory
and cardiac endophenotype. The control of respir-
ation requires a concerted interplay between
several neurotransmitters across distinct brainstem
nuclei to maintain a normal breathing pattern. Rett
syndrome has been characterized by excessive
excitatory activity in expiratory neurons and deficits
in medulla of nor-epinephrine and serotonin, which
contribute to breathing regularity [57,58]. Several
therapies have been designed to improve this
imbalance (Fig. 1c) variously by increasing GABA
availability through GABA reuptake inhibitors,
increasing expiratory neuron inhibition by seroto-
nin agonists, or directly increasing norepinephrine
and serotonin concentrations with the serotonin
norepinephrine reuptake inhibitor Desipramine
[59,60]. In addition, a recent study suggests a
potential therapy to mitigate arrhythmic cardiac
function expressed as prolonged QT intervals,
which is another aspect of Rett Syndrome. The
sodium-channel-blocking antiseizure drug pheny-
toin reduces this interval as well as the general
occurrence of arrhythmias [61

&

].

Developmental disorders
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Other therapies that have proven to be partially
effective in ameliorating some of deficits in the
mutant mouse models and patients include supple-
menting with L-carnitine, an important antioxidant
that improves mitochondrial function [62,63].
Oxidative stress and mitochondrial dysfunction
have been recently reported to be increased in
the hippocampal cells of MeCP2 mutant mice
[64

&

,reviewed in 65]. However, the most impressive
rescue of the phenotype of MeCP2 mutant mice was
recently observed following bone marrow trans-
plant from wildtype to mutant mice, which resulted
in the engraftment of wildtype microglia into the
brain of mutant mice [66

&&

]. Nevertheless, the need
of exposure to high doses of radiation so as to
disrupt hematopoiesis in the mutant mice and to
permeate the blood–brain barrier, perhaps, limits
the potential applications of this therapeutic option
to treat Rett syndrome patients.

CONCLUSION

MeCP2 has complex functions and mechanisms of
action. The transcriptional modulatory polyvalence
of MeCP2, its heterogeneity of spatial and temporal
expression, and its genomewide binding inter-
actions make it unlikely that a single-target
therapeutic agent will suffice to completely restore
physiological functions in Rett syndrome patients.
It is, therefore, crucial to identify combinatorial
therapeutic approaches and test them in mouse
models of the disorder, so that multiple molecular
players and pathways affected in Rett syndrome
are simultaneously restored, thus increasing the
chances of a strong therapeutic response.
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